R语言做KEGG总是报错,如何用在线KEGG做富集?

本文详细介绍了如何在R语言环境下进行KEGG富集分析遇到问题时,如何通过在线KEGG网站进行操作。首先准备差异基因列表,然后在Excel中筛选并转换基因符号为ENTREZID,使用DAVID网站进行转换,接着合并转换后的数据,并在KEGG官网的Mapper工具中进行颜色标注和富集分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1,准备好一个差异基因列表:

获得类似下图一样列表,其中我这个文件基因是以SYMBOL格式命名:

(这一步在R语言上比较方便,如果用EXCEL,也可以完成。) 

2,打开excel,利用筛选功能,含有up的写上red,含有down,为blue:

 3,因为在KEGG网站中,需要将SYMBOL转为ENTREZID,所以,打开网站:DAVID(自己搜索能找到)https://david.ncifcrf.gov/conversion.jsp

 

<think>好的,我现在要解决用户的问题:如何使用ClusterProfiler对仓鼠进行KEGG和GO富集分析。首先,我需要回忆一下ClusterProfiler的基本使用流程,然后考虑仓鼠的特殊情况。 用户可能已经进行了RNA-seq或其他组学实验,得到了差异表达基因,现在想进行功能富集分析。但仓鼠不像人类或小鼠那样是常见模式生物,所以数据库支持可能有限。首先需要确认的是,ClusterProfiler是否支持仓鼠的注释包。 记得ClusterProfiler主要依赖于OrgDb和Org.Hs.eg.db这样的物种注释数据库。对于仓鼠,可能需要查找对应的OrgDb包,比如Org.Cgriseus.eg.db(假设仓鼠的学名是Cricetulus griseus)。如果Bioconductor没有官方支持,用户可能需要自己构建注释数据库,或者使用其他方法,比如转换同源基因到支持的物种,比如小鼠或人类。 接下来,步骤大致分为准备基因列表、选择合适的注释数据库、进行富集分析、可视化结果。需要提醒用户安装必要的R包,如clusterProfiler、AnnotationHub等。如果仓鼠的OrgDb不存在,可能需要通过AnnotationHub获取或使用其他基因ID转换工具,比如biomaRt,但需要注意这可能需要网络连接和正确的基因标识符。 KEGG分析方面,需要确认仓鼠的KEGG数据库代码,比如hsa是人类,mmu是小鼠,仓鼠可能是cre(Cricetulus griseus的缩写?),但不确定。用户需要查阅KEGG官网确认物种代码是否正确,否则分析会失败。如果KEGG不支持,可能需要使用其他通路数据库或进行同源映射。 GO富集的话,如果OrgDb可用,可以直接使用enrichGO函数。否则,可能需要用enricher函数和自定义的GO注释文件,比如从Gene Ontology官网下载仓鼠的GO注释,或者通过同源基因获取注释信息。 用户可能遇到的常见问题包括基因ID转换失败、注释数据缺失、富集结果不显著等。需要提醒他们检查基因ID类型是否正确,比如是否使用Entrez ID或Symbol,以及是否进行了正确的ID转换。 另外,可视化部分,可以使用dotplot、emapplot等函数,但需要确保结果中有显著的富集条目,否则图形可能无法生成或没有信息量。 总结步骤:安装必要包→准备基因列表(如差异表达基因的Entrez ID)→获取仓鼠的注释数据库→进行GO和KEGG富集分析→结果可视化。如果注释数据不可用,考虑替代方案如同源映射或自定义注释文件。 还需要注意,如果用户不熟悉R语言,可能需要指导他们如何安装包、加载数据和处理错误。另外,提醒他们在分析前进行适当的数据预处理,如去除重复基因、处理基因ID等。</think>以下为使用clusterProfiler进行仓鼠KEGG和GO富集分析的步骤指南: --- ### **一、前期准备** #### 1. 安装必要R包 ```r if (!require("BiocManager")) install.packages("BiocManager") BiocManager::install(c("clusterProfiler", "org.Hs.eg.db", "AnnotationHub", "enrichplot")) ``` #### 2. 加载库 ```r library(clusterProfiler) library(AnnotationHub) library(enrichplot) ``` #### 3. 基因列表准备 - 输入基因需为 **Entrez ID** 格式 - 若原始数据为基因Symbol,需通过注释库转换: ```r # 假设已有symbol列表:gene_symbols <- c("GeneA", "GeneB"...) hub <- AnnotationHub() # 查询仓鼠注释(以中国仓鼠Cricetulus griseus为例) query(hub, "Cricetulus griseus") # 下载对应OrgDb(若存在) hamster_orgdb <- hub[["AH123456"]] # 替换实际ID # ID转换 gene_entrez <- mapIds(hamster_orgdb, keys=gene_symbols, column="ENTREZID", keytype="SYMBOL") ``` --- ### **二、GO富集分析** #### 1. 执行分析 ```r ego <- enrichGO( gene = gene_entrez, OrgDb = hamster_orgdb, # 若无可替换为同源物种库 keyType = "ENTREZID", ont = "ALL", # "BP", "MF", "CC" 可选 pAdjustMethod = "BH", pvalueCutoff = 0.05, qvalueCutoff = 0.2 ) ``` #### 2. 结果可视化 ```r dotplot(ego, showCategory=15) goplot(ego) # 需要显著富集结果 ``` --- ### **三、KEGG富集分析** #### 1. 确定KEGG物种代码 - 仓鼠物种代码需查询KEGG官网(如中国仓鼠:`cre`) - 若未收录,需通过同源基因映射(如转小鼠`mmu`) #### 2. 执行分析 ```r ekegg <- enrichKEGG( gene = gene_entrez, organism = "cre", # 替换正确代码 keyType = "kegg", pvalueCutoff = 0.05 ) ``` #### 3. 替代方案(若无物种支持) ```r # 使用同源基因转换(示例转小鼠) homologs <- getLDS( attributes=c("entrezgene_id"), mart=hamster_mart, # 仓鼠Biomart attributesL=c("entrezgene_id"), martL=useMart("ensembl", dataset="mmusculus_gene_ensembl") ) # 用小鼠KEGG分析 ekegg <- enrichKEGG(gene=homologs$entrezgene_id_L, organism="mmu") ``` --- ### **四、结果解读** 1. **关键指标** - `p.adjust`:校正后p值(<0.05显著) - `Count`:富集基因数 - `GeneRatio`:富集基因比例 2. **保存结果** ```r write.csv(ego@result, "GO_enrichment.csv") write.csv(ekegg@result, "KEGG_enrichment.csv") ``` --- ### **五、常见问题解决** 1. **注释库缺失** - 通过`AnnotationHub`搜索替代资源 - 使用`biomaRt`在线获取注释: ```r library(biomaRt) hamster_mart <- useMart("ensembl", dataset="cgriscus_gene_ensembl") # 检查实际数据集名称 ``` 2. **基因ID转换失败** - 检查原始ID类型(Symbol/ENSEMBL等) - 使用`clusterProfiler::bitr`多步骤转换 --- ### **附:注意事项** - 若富集结果为空,尝试放宽`pvalueCutoff`或检查基因ID匹配 - 推荐使用`DOSE`包进行结果语义相似性分析 - 对非模式生物,建议结合多数据库验证结果可靠性 如有具体数据或报错信息,可进一步优化分析流程!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值