【动态规划】01背包

⭐️动态规划-0/1背包

什么是0/1背包问题,0/1背包问题是背包问题中一道重要的题目,大致意思是有n个物品,每个物品有重量w和价值v,要把这些物品中的一些物品放入容量为m的背包中,要求背包能放下而且其价值最大0/1背包就是每个物品只有一个,只能是放或者不放

❓问题描述

例题:给定一个背包,其容量为7,有4个物品,物品的重量和价值分别为{2,3,3,4},{5,10,15,20},每个物品最多只能放一次,要求放入背包中的物品的总价值最大,求出总价值。

🍉分析

对于动态规划的问题,还是先对问题进行划分

  1. 划分问题

最终结果是求容量为7的背包所能放的最大价值物品,那容量为7的背包所能放的最大价值物品依赖于容量为小于7的背包所能放的最大价值物品,以此类推,从最小的问题入手,可以逐渐求出最终结果。

  1. 确定动态规划方程

通过例题分析,对于背包容量和物品之间的存在两种关系,当前背包容量放不下当前物品当前背包容量可以放下当前物品,由于有背包容量和物品这两项,所以一般采用二维的dp数组,需要明确的是dp[i] [j]的含义是“从下标0~i的物品中任意取,放入容量为j的背包中”

  • 背包容量放不下当前物品

dp[i][j]=dp[i][j−1],0<=i<n,w[i]>j dp[i][j] = dp[i][j-1], 0<=i<n,w[i]>j dp[i][j]=dp[i][j1],0<=i<n,w[i]>j

  • 背包容量可以放下当前物品

dp[i][j]=Max(dp[i−1][j],dp[i][j−w[i]]+v[i]),0<=i<n,w[i]<j dp[i][j] = Max(dp[i-1][j],dp[i][j-w[i]]+v[i]),0<=i<n,w[i]<j dp[i][j]=Max(dp[i1][j],dp[i][jw[i]]+v[i]),0<=i<n,w[i]<j

第一个动态规划方程的含义是背包放不下当前物品,那当前背包中的最大价值还是前i-1个物品

第二个动态规划方程的含义是背包可以放下当前物品,那就对放入物品i后的背包价值和不放物品i时的背包价值进行比较,取较大者,满足最优决策。

  1. 初始条件

对dp数组进行初始化,由于第i个物品依赖于第i-1个物品和j-1时的背包容量,所以dp数组的第一行和第一列是需要手动初始化的第一行的含义是,第一个物品放入容量为0~j的背包中的价值(那也就是当背包容量小于物品重量的时候初始化为0,大于等于物品重量的时候初始化为物品价值),第一列含义是,背包容量为0时背包所能放的最大价值(背包容量为0,那么自然价值也为0),其他位置的值初始化随意,不过一般初始化为0

dp数组

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KrOxAzZq-1649231340595)(D:\资源\学习工作\lnnau\typora笔记\笔记图片\image-20220406154208640.png)]

物品重量和价值

编号重量weight价值value
025
1310
2315
3420

💻代码

package com.dp;
import java.util.Arrays;
import java.util.Scanner;
/**
 * @Author Lunau
 * @Create 2022-03-31 15:38
 * @Description	2 6 2 3 6 5 5 4 4 6
 * @Result
 */
public class KnapSack {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        System.out.println("请输入背包容量:");
        int bagWeight = sc.nextInt();
        System.out.println("请输入物品数量:");
        int nums = sc.nextInt();
        System.out.println("请输入物品重量和物品价值(重量和价值之间空格隔开," +
                "每个物品之间空格或回车隔开):");
        int[] weight = new int[nums];
        int[] value = new int[nums];
        for(int i=0;i<nums;i++) {
            weight[i] = sc.nextInt();
            value[i] = sc.nextInt();
        }
        System.out.println(getMaxValue(weight,value,bagWeight));
    }
    //  0/1背包
    private static int getMaxValue(int[] weight,int[] value,int bagweight){
        //定义dp数组   表示从0~i的物品中任意取,放进价值为j的背包中的最大价值
        int[][] dp = new int[weight.length][bagweight+1];
        //dp数组初始化   第一行初始化为第一个物品放进背包的价值
        for(int j=weight[0];j<=bagweight;j++) {
            dp[0][j] = value[0];
        }
        //遍历物品 第一个物品在dp数组初始化的时候已经放入计算过了
        for(int i=1;i<weight.length;i++) {
            //遍历背包容量 背包容量为0的时候已经被计算了
            for(int j=1;j<=bagweight;j++) {
                if (j<weight[i]) {  //当前背包容量放不下物品i
                    dp[i][j] = dp[i-1][j];
                } else {            //当前背包容量可以放下物品i,判断放下最优还是原来的更优
                    dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);
                }
            }
        }
        //回溯求装入背包的物品
        int[] goods = new int[value.length];
        for(int j=bagweight,i=goods.length-1;i>0;i--) {
        	if(dp[i][j]>dp[i-1][j]) {
        		goods[i] = 1;
        		j = j-weight[i];
        	} else {
        		goods[i] = 0;
        	}
            //对第一个物品是否放入背包进行特判
            if(i-1==0&&dp[i-1][j]!=dp[i][j]) {
            	goods[0]=1;
            }
        }

        //打印装入背包的物品
        System.out.println(Arrays.toString(goods));
        //返回dp数组右下角的值,最优结果
        return dp[weight.length-1][bagweight];
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值