题目:
给你一个按照非递减顺序排列的整数数组 nums
,和一个目标值 target
。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target
,返回 [-1, -1]
。
你必须设计并实现时间复杂度为 O(log n)
的算法解决此问题。
方法:两次二分查找,一次查开始位置,一次查结束位置
class Solution {
public int[] searchRange(int[] nums, int target) {
// 两次二分查找
int left = 0;
int right = nums.length - 1;
int first = -1;
int last = -1;
// 找第一个等于target的位置
while (left <= right) {
int middle = (left + right) / 2;
if (nums[middle] == target) {
first = middle;
right = middle - 1; //重点,找到一个,在这个的左边继续找看还有没有
} else if (nums[middle] > target) {
right = middle - 1;
} else {
left = middle + 1;
}
}
// 最后一个等于target的位置
left = 0;
right = nums.length - 1;
while (left <= right) {
int middle = (left + right) / 2;
if (nums[middle] == target) {
last = middle;
left = middle + 1; //重点,找到一个,在这个的右边继续找看还有没有
} else if (nums[middle] > target) {
right = middle - 1;
} else {
left = middle + 1;
}
}
return new int[]{first, last};
}
}
// 方法二
class Solution {
public int[] searchRange(int[] nums, int target) {
int start = lowerBound(nums, target);
// 全部小于target或者数组为空或者数组中不存在target
if (start == nums.length || nums[start] != target) {
return new int[] {-1, -1};
}
int end = lowerBound(nums, target + 1) - 1;
return new int[] {start, end};
}
private int lowerBound(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid - 1;
}
}
return left;
}
}
时间复杂度 o(logn)
空间复杂度 o(1)