英伟达NVIDIA Jetson Xavier NX入门,从裸机环境配置到部署yolov5并成功运行,包括训练自己的模型

1.下载官方镜像(梯子节点换为香港节点)

官方下载网址: 

Jetson Download Center | NVIDIA Developericon-default.png?t=O83Ahttps://developer.nvidia.com/embedded/downloads

 

2.使用SDFormatter格式化SDK

参考文章:胎儿式保姆级教程:Jetson Xavier NX镜像烧录、开机配置、中文配置、风扇设置、远程桌面、文件传输配置、pycharm安装环境配置,QQ,opencv(cuda编译),torch(GPU)._jeston xavier windows-CSDN博客

3.解压zip镜像得到img文件,用win32diskImager烧录

参考文章:胎儿式保姆级教程:Jetson Xavier NX镜像烧录、开机配置、中文配置、风扇设置、远程桌面、文件传输配置、pycharm安装环境配置,QQ,opencv(cuda编译),torch(GPU)._jeston xavier windows-CSDN博客

4.开机后在应用中找到Language Support设置系统语言为中文

参考文章:

Jeston Xavier NX 语言设置和中文键盘输入_jetson更换语言-CSDN博客

5.换源

参考文章:Jetson Xavier NX 刷机+更换清华源完美讲解_reset the board to boot from internal emmc.-CSDN博客

sudo gedit /etc/apt/sources.list  #打开后将原有源全用#注释掉

在最后一行添加(此处为清华源):

deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
   deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
   deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse
   deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse
   deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
   deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
   deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main universe restricted
   deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main universe restricted

添加完Ctrl+s保存,更新源

sudo apt-get update

6.卸载原有OpenCV并重装支持CU

### 在 Jetson Xavier NX 设备上通过 eMMC 部署 YOLOv5 模型 #### 准备工作 为了在 Jetson Xavier NX 的 eMMC 上成功部署 YOLOv5 模型,需要确保设备已正确设置具备必要的开发环境。Jetson Xavier NX 支持所有热门 AI 框架,具有高达 21 TOPS 加速计算能力,能够运行现代神经网络处理来自多个高分辨率传感器的数据[^1]。 #### 安装依赖库和工具链 首先,在 Jetson Xavier NX 上安装所需的 Python 库和其他依赖项。这可以通过更新包管理器安装特定版本的 PyTorch 和 torchvision 来完成,这些库对于加载预训练模型至关重要。此外,还需要安装 OpenCV 等图像处理库来辅助检测任务。 ```bash sudo apt-get update && sudo apt-get upgrade -y pip3 install torch==1.7.0+cu110 torchvision==0.8.1+cu110 torchaudio===0.7.0 -f https://download.pytorch.org/whl/torch_stable.html pip3 install opencv-python numpy matplotlib Pillow scikit-image ``` #### 下载 YOLOv5 源码及权重文件 获取官方发布的 YOLOv5 GitHub 仓库中的最新源代码,下载对应的预训练权重文件。此操作可以直接克隆远程存储库或者手动上传本地保存好的 .pt 文件至目标机器。 ```bash git clone https://github.com/ultralytics/yolov5.git cd yolov5/ wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.pt ``` #### 修改配置适应硬件特性 考虑到 Jetson Xavier NX 特有的架构特点以及性能优化需求,建议调整部分参数以更好地适配该平台。例如,降低 batch size 或者启用 TensorRT 进行推理加速等措施均有助于提高效率。 编辑 `detect.py` 中的相关选项: ```python import torch from models.experimental import attempt_load from utils.general import non_max_suppression, scale_coords from utils.torch_utils import select_device weights = 'path/to/best.pt' # 替换成实际路径 imgsz = (640, 640) device = select_device('') # 使用默认 GPU/CPU 自动选择 half = device.type != 'cpu' model = attempt_load(weights, map_location=device) # 载入模型 if half: model.half() # 半精度浮点数转换 ``` #### 执行检测命令 最后一步是在终端执行检测脚本,验证整个过程是否顺利无误。如果一切正常,则可以在 Jetson Xavier NX 上看到实时物体识别的结果展示出来。 ```bash python3 detect.py --source 0 --weights ./yolov5s.pt --conf-thres 0.4 --iou-thres 0.5 ``` 上述方法适用于大多数情况下的标准部署流程;然而针对某些特殊应用场景可能还需进一步定制化改造。值得注意的是,尽管 eMMC 存储空间有限,但对于常规规模的应用来说通常足够满足需求[^2]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值