前言
- 官网地址:分布式任务调度平台XXL-JOB
- 概述
- XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
- 特性
- 简单:支持通过Web页面对任务进行CRUD操作,操作简单,一分钟上手;
- 动态:支持动态修改任务状态、启动/停止任务,以及终止运行中任务,即时生效;
- 调度中心HA(中心式):调度采用中心式设计,“调度中心”自研调度组件并支持集群部署,可保证调度中心HA;
- 执行器HA(分布式):任务分布式执行,任务"执行器"支持集群部署,可保证任务执行HA;
- 注册中心: 执行器会周期性自动注册任务, 调度中心将会自动发现注册的任务并触发执行。同时,也支持手动录入执行器地址;
- 弹性扩容缩容:一旦有新执行器机器上线或者下线,下次调度时将会重新分配任务;
- 触发策略:提供丰富的任务触发策略,包括:Cron触发、固定间隔触发、固定延时触发、API(事件)触发、人工触发、父子任务触发;
- 调度过期策略:调度中心错过调度时间的补偿处理策略,包括:忽略、立即补偿触发一次等;
- 阻塞处理策略:调度过于密集执行器来不及处理时的处理策略,策略包括:单机串行(默认)、丢弃后续调度、覆盖之前调度;
- 任务超时控制:支持自定义任务超时时间,任务运行超时将会主动中断任务;
- 任务失败重试:支持自定义任务失败重试次数,当任务失败时将会按照预设的失败重试次数主动进行重试;其中分片任务支持分片粒度的失败重试;
- 任务失败告警;默认提供邮件方式失败告警,同时预留扩展接口,可方便的扩展短信、钉钉等告警方式;
- 路由策略:执行器集群部署时提供丰富的路由策略,包括:第一个、最后一个、轮询、随机、一致性HASH、最不经常使用、最近最久未使用、故障转移、忙碌转移等;
- 分片广播任务:执行器集群部署时,任务路由策略选择"分片广播"情况下,一次任务调度将会广播触发集群中所有执行器执行一次任务,可根据分片参数开发分片任务;
- 动态分片:分片广播任务以执行器为维度进行分片,支持动态扩容执行器集群从而动态增加分片数量,协同进行业务处理;在进行大数据量业务操作时可显著提升任务处理能力和速度。
- 故障转移:任务路由策略选择"故障转移"情况下,如果执行器集群中某一台机器故障,将会自动Failover切换到一台正常的执行器发送调度请求。
- 任务进度监控:支持实时监控任务进度;
- Rolling实时日志:支持在线查看调度结果,并且支持以Rolling方式实时查看执行器输出的完整的执行日志;
- 史版本回溯。
- 脚本任务:支持以GLUE模式开发和运行脚本任务,包括Shell、Python、NodeJS、PHP、PowerShell等类型脚本;
- 命令行任务:原生提供通用命令行任务Handler(Bean任务,“CommandJobHandler”);业务方只需要提供命令行即可;
- 任务依赖:支持配置子任务依赖,当父任务执行结束且执行成功后将会主动触发一次子任务的执行, 多个子任务用逗号分隔;
- 一致性:“调度中心”通过DB锁保证集群分布式调度的一致性, 一次任务调度只会触发一次执行;
- 自定义任务参数:支持在线配置调度任务入参,即时生效;
- 调度线程池:调度系统多线程触发调度运行,确保调度精确执行,不被堵塞;
- 数据加密:调度中心和执行器之间的通讯进行数据加密,提升调度信息安全性;
- 邮件报警:任务失败时支持邮件报警,支持配置多邮件地址群发报警邮件;
- 推送maven中央仓库: 将会把最新稳定版推送到maven中央仓库, 方便用户接入和使用;
- 运行报表:支持实时查看运行数据,如任务数量、调度次数、执行器数量等;以及调度报表,如调度日期分布图,调度成功分布图等;
- 全异步:任务调度流程全异步化设计实现,如异步调度、异步运行、异步回调等,有效对密集调度进行流量削峰,理论上支持任意时长任务的运行;
- 跨语言/OpenAPI:调度中心与执行器提供语言无关的 OpenApi(RESTful 格式),第三方任意语言可据此对接调度中心或者实现执行器,实现多语言支持。除此之外,还提供了 “多任务模式”和“httpJobHandler”等其他跨语言方案;
- 国际化:调度中心支持国际化设置,提供中文、英文两种可选语言,默认为中文;
- 容器化:提供官方docker镜像,并实时更新推送dockerhub,进一步实现产品开箱即用;
- 线程池隔离:调度线程池进行隔离拆分,慢任务自动降级进入"Slow"线程池,避免耗尽调度线程,提高系统稳定性;
- 用户管理:支持在线管理系统用户,存在管理员、普通用户两种角色;
- 权限控制:执行器维度进行权限控制,管理员拥有全量权限,普通用户需要分配执行器权限后才允许相关操作;
- AI任务:原生提供AI执行器,并内置多个AI任务Handler,与spring-ai、ollama、dify等集成打通,支持快速开发AI类任务。
环境搭建
- 拉取源码:xxl-job: 一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
- 本地创建一个空的
SpringBoot
项目用于测试- 环境版本:
JDK
:>17xxl-job
:≥3.1.0spring-boot
:3.4.5
使用
1、xxljob服务目录
代码拉下来并且使用
IDE
打开后,左侧目录用处如下
doc
目录:里面存放了数据库脚本以及文档xxl-job-admin
:xxljob的服务端,启动后访问ip+服务端口+服务context-path属性
即可打开xxljob
前端页面xxl-job-core
:核心包,客户端项目的Maven依赖包xxl-job-executor-samples
:测试模块,里面三个服务是三种项目的测试方式,我们下面参考第二种即可
2、启动xxljob服务
打开
doc->db->tables_xxl_job.sql
文件,在本地数据库中执行,创建基本的库和表
打开
xxl-job-admin
服务的application.properties
配置文件
- 可以自行修改端口或使用默认的
8080
- 找到
spring.datasource.xxx
配置,修改你本地数据库的地址、账号和密码- 如需邮件报警功能,修改
spring.mail.xxx
配置即可最后启动
xxl-job-admin
服务即可
3、配置测试服务
以下配置可以参考源码提供的
xxl-job-executor-sample-springboot
服务,共有如下步骤:
- 引入依赖
application.properties
添加配置文件- 手动配置
Bean
- 编写
xxljob
任务类
3.1、引入xxl-job-core
依赖
<dependency>
<groupId>com.xuxueli</groupId>
<artifactId>xxl-job-core</artifactId>
<version>3.1.0</version>
</dependency>
3.2、配置文件添加配置
server:
port: 8888
spring:
application:
name: my-spring-boot
xxl:
job:
admin:
### xxl-job服务端地址
addresses: http://127.0.0.1:8080/xxl-job-admin
### xxl-job, access token,对应到xxl-job-admin的配置文件中的xxl.job.accessToken配置
accessToken: default_token
### 该参数用于设置 XXL-JOB 管理中心(Admin)与执行器(Executor)之间通信的超时时间。如果未配置,默认为 3 秒。
timeout: 3
executor:
### 一般都会使用项目名,页面上执行器的AppName要和这个值一致
appname: ${spring.application.name}
### 当前服务部署的地址,多个地址用逗号分隔,如果为空则默认使用ip:port
address:
### 客户端所在服务器的ip,如果不填则 服务端自动获取
ip:
# 客户端端口,随项目一起启动,不能和当前项目端口冲突
port: 9999
### xxljob日志文件地址
logpath: /data/applogs/xxl-job/jobhandler
### 日志文件存储时长
logretentiondays: 30
3.3、添加Bean对象
package com.tcc.config;
import com.xxl.job.core.executor.impl.XxlJobSpringExecutor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* xxl-job config
*
* @author xuxueli 2017-04-28
*/
@Configuration
public class XxlJobConfig {
private Logger logger = LoggerFactory.getLogger(XxlJobConfig.class);
@Value("${xxl.job.admin.addresses}")
private String adminAddresses;
@Value("${xxl.job.admin.accessToken}")
private String accessToken;
@Value("${xxl.job.admin.timeout}")
private int timeout;
@Value("${xxl.job.executor.appname}")
private String appname;
@Value("${xxl.job.executor.address}")
private String address;
@Value("${xxl.job.executor.ip}")
private String ip;
@Value("${xxl.job.executor.port}")
private int port;
@Value("${xxl.job.executor.logpath}")
private String logPath;
@Value("${xxl.job.executor.logretentiondays}")
private int logRetentionDays;
@Bean
public XxlJobSpringExecutor xxlJobExecutor() {
logger.info(">>>>>>>>>>> xxl-job config init.");
XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
xxlJobSpringExecutor.setAppname(appname);
xxlJobSpringExecutor.setAddress(address);
xxlJobSpringExecutor.setIp(ip);
xxlJobSpringExecutor.setPort(port);
xxlJobSpringExecutor.setAccessToken(accessToken);
xxlJobSpringExecutor.setTimeout(timeout);
xxlJobSpringExecutor.setLogPath(logPath);
xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);
return xxlJobSpringExecutor;
}
}
3.4、创建Job类,编写定时任务方法
package com.tcc.job;
import com.xxl.job.core.context.XxlJobHelper;
import com.xxl.job.core.handler.annotation.XxlJob;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Configuration;
@Configuration
public class TestJob {
private static final Logger log = LoggerFactory.getLogger(TestJob.class);
@XxlJob("testJob")
public void testJob() {
// 通过 XxlJobHelper.getJobParam 获取定时任务的传参
String jobParam = XxlJobHelper.getJobParam();
log.info("定时任务:testJob,执行成功,参数为:{}", jobParam);
}
}
3.6、启动测试服务
4、页面配置
上面我们两个服务(一个
xxljob
服务端、一个测试服务)都启动完成了,接下来该页面配置了
浏览器访问
http://localhost:8080/xxl-job-admin
端口和地址要和服务端的配置文件对应的上默认账号
admin
,默认密码123456
登录成功后先点击左侧
执行器管理
,添加执行器
添加完成后,我们等待几分钟,刷新页面,即可发现检测到机器地址了
注册完后,我们再点击
任务管理
,上面选中我们刚刚新加的执行器,右侧新增任务
输入表单信息
保存后在数据右侧下拉中选择执行一次
最后返回服务查看日志即可
5、配置属性详细说明
- 基础配置:
- 执行器:任务的绑定的执行器,任务触发调度时将会自动发现注册成功的执行器, 实现任务自动发现功能; 另一方面也可以方便的进行任务分组。每个任务必须绑定一个执行器, 可在 “执行器管理” 进行设置;
- 任务描述:任务的描述信息,便于任务管理;
- 负责人:任务的负责人;
- 报警邮件:任务调度失败时邮件通知的邮箱地址,支持配置多邮箱地址,配置多个邮箱地址时用逗号分隔;
- 触发配置:
- 调度类型:
无:该类型不会主动触发调度;
CRON:该类型将会通过CRON,触发任务调度;
固定速度:该类型将会以固定速度,触发任务调度;按照固定的间隔时间,周期性触发;
固定延迟:该类型将会以固定延迟,触发任务调度;按照固定的延迟时间,从上次调度结束后开始计算延迟时间,到达延迟时间后触发下次调度;
- CRON:触发任务执行的Cron表达式;
- 固定速度:固定速度的时间间隔,单位为秒;
- 固定延迟:固定延迟的时间间隔,单位为秒;
- 任务配置:
- 运行模式:
BEAN模式:任务以JobHandler方式维护在执行器端;需要结合 “JobHandler” 属性匹配执行器中任务;
GLUE模式(Java):任务以源码方式维护在调度中心;该模式的任务实际上是一段继承自IJobHandler的Java类代码并 “groovy” 源码方式维护,它在执行器项目中运行,可使用@Resource/@Autowire注入执行器里中的其他服务;
GLUE模式(Shell):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “shell” 脚本;
GLUE模式(Python):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “python” 脚本;
GLUE模式(PHP):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “php” 脚本;
GLUE模式(NodeJS):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “nodejs” 脚本;
GLUE模式(PowerShell):任务以源码方式维护在调度中心;该模式的任务实际上是一段 “PowerShell” 脚本;
- JobHandler:运行模式为 “BEAN模式” 时生效,对应执行器中新开发的JobHandler类“@XxlJob”注解自定义的value值;
- 执行参数:任务执行所需的参数;
- 高级配置:
- 路由策略:当执行器集群部署时,提供丰富的路由策略,包括;
FIRST(第一个):固定选择第一个机器;
LAST(最后一个):固定选择最后一个机器;
ROUND(轮询):;
RANDOM(随机):随机选择在线的机器;
CONSISTENT_HASH(一致性HASH):每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。
LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;
LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举;
FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;
BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;
SHARDING_BROADCAST(分片广播):广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;
- 子任务:每个任务都拥有一个唯一的任务ID(任务ID可以从任务列表获取),当本任务执行结束并且执行成功时,将会触发子任务ID所对应的任务的一次主动调度。
- 调度过期策略:
- 忽略:调度过期后,忽略过期的任务,从当前时间开始重新计算下次触发时间;
- 立即执行一次:调度过期后,立即执行一次,并从当前时间开始重新计算下次触发时间;
- 阻塞处理策略:调度过于密集执行器来不及处理时的处理策略;
单机串行(默认):调度请求进入单机执行器后,调度请求进入FIFO队列并以串行方式运行;
丢弃后续调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,本次请求将会被丢弃并标记为失败;
覆盖之前调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,将会终止运行中的调度任务并清空队列,然后运行本地调度任务;- 任务超时时间:支持自定义任务超时时间,任务运行超时将会主动中断任务;
- 失败重试次数;支持自定义任务失败重试次数,当任务失败时将会按照预设的失败重试次数主动进行重试;
分片使用
- 我们现在生产环境一般是分布式部署方式,即最少分两台服务器部署同一个服务,保证服务高可用
- 如果有一个定时任务需要处理的数据量很大,那么我们就要采用分片式方式执行。即每个服务器分担一点要处理的数据,不要把压力都放在同一个服务器上
- 下面我们基于上面启动的服务稍作修改后演示
1、启动相同服务
由于我图方便,都放在一台电脑上演示。只要服务名一样即可,端口可以不一样。并且也要修改
xxljob
客户端的端口
2、添加测试方法
- 依旧在原来添加的测试方法类中添加方法
@XxlJob("testJob2")
public void testJob2() {
int shardIndex = XxlJobHelper.getShardIndex();
int shardTotal = XxlJobHelper.getShardTotal();
log.info("定时任务:testjob2,执行成功,当前分片索引:{}, 总共可以分:{}片", shardIndex, shardTotal);
}
3、启动新服务
注意,上面改代码了,先重启服务,后执行下面操作。
在上方选择
Edit Configurations
选中第一个服务,点击拷贝
选择左侧拷贝后的服务,然后右侧点击
Modify options->add VM options
在
Vm options
输入框中输入-Dserver.port=8889
,不要和原来服务的端口冲突
最后点击下面的
OK
,不要点击run
修改完服务端口后,我们还要修改
xxljob
的客户端端口打开
application.yml
配置文件,修改xxl.job.executor.port
端口号为9998
,不要和原来启动的服务冲突即可然后在右上角选中新启动配置,启动即可
4、页面添加定时任务
依旧是之前的操作,但是路由策略选择:分片广播
保存后,新添加的行数据右侧下拉中选择执行一次
最后返回代码,查看两个服务控制台即可
总结
使用步骤:
- 提前准备
- 拉取代码
- 服务端:
- 在数据库中执行
doc->db->tables_xxl_job.sql
文件- 修改
xxl-job-admin
服务的配置文件中数据库、文件(如果需要)的配置,然后启动- 客户端:
- 引入
xxl-job.core
依赖- 配置文件中添加
xxl-job
服务端以及客户端配置- 手动注入
Bean
对象:xxlJobExecutor
- 编写定时任务方法,并添加注解
@XxlJob("jobName")
- Web页面:
- 添加执行器,
AppName
要和客户端配置的appname
一致- 任务管理中添加定时任务配置
- 新增的数据右侧下拉中选择启动,即可根据配置的定时条件执行任务
- 如果任务有报错,可以在左侧调度日志菜单查看报错
上面只演示了常用的调度的方式,其余定时任务的高级配置属性可以自行尝试