自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(69)
  • 收藏
  • 关注

原创 大语言模型全方位解析:从基础认知到RESTful API应用

本文聚焦于大语言模型,先介绍了大语言模型的基础知识,包括日常可用的大模型、作用、核心价值,以及其与人工智能的关系、发展历程和不同发展阶段。随后展示了大模型部署与应用基础章节。重点阐述了RESTful风格API,涵盖API概念、RESTful的发展背景、概念、特点,以及在大模型中的使用场景和优点,旨在帮助读者全面了解大语言模型及其相关的API应用。

2025-07-07 20:05:31 746

原创 MobileNetV3:架构创新、性能优化与代码实现解析

本文聚焦于MobileNetV3轻量级卷积神经网络。介绍了其于2019年由Google研究院在ICCV发表,有large和small两个版本,在ImageNet分类任务上较MobileNetV2有性能提升。深入剖析了其创新点,如Block中加入SE模块、更新激活函数,使用NAS搜索参数并结合NetAdapt精调结构,重新设计耗时层以减少计算时间。同时指出了可能存在的问题,如在部分场景下准确率不如MobileNetV2。详细说明了网络结构及各参数含义,并给出了完整的Python代码实现,为相关研究和应用提供了

2025-06-26 10:36:01 1026

原创 MobileNetV2:架构创新、结构剖析与代码实现

本文聚焦于 MobileNetV2 卷积神经网络,旨在深入剖析其架构特点与实现细节。首先介绍了 MobileNetV2 提出的背景,指出其是为弥补 MobileNetV1 的不足而设计。接着详细阐述了该网络的创新点,如倒残差结构、Relu6 激活函数等,分析了这些创新对模型性能的提升作用。随后对网络结构进行了说明,解释了架构表中各参数的意义。最后给出了基于 PyTorch 的代码实现,并进行了模型测试。研究表明,MobileNetV2 在轻量性和高性能方面表现出色,为移动设备和嵌入式系统的视觉应用提供了有效

2025-06-23 21:01:15 1009

原创 MobileNetV1:轻量级卷积神经网络的深度剖析与实现

本文聚焦于MobileNetV1轻量级卷积神经网络。首先介绍了其提出背景,即传统CNN因参数多、算力要求高而难以在移动端部署。接着详细阐述了网络的创新点,如深度可分离卷积,通过DW卷积和PW卷积减少计算量,以及 $\alpha、\beta$ 参数对模型性能和资源占用的调节作用。分析了网络存在的部分DW卷积核参数为0的问题及原因。展示了网络结构并修正了原论文的错误。最后给出了基于PyTorch的代码实现及测试,MobileNetV1为移动端视觉应用提供了高效的解决方案。

2025-06-23 17:09:22 707

原创 ResNet:深度神经网络的突破与应用解析

本文聚焦于ResNet深度神经网络,介绍其由Microsoft研究团队于2015年提出,在ImageNet和COCO数据集比赛中表现卓越。剖析了ResNet的特点、优点,阐述了其网络结构,深入分析了更深网络层数面临的问题及ResNet的创新解决方法,如残差结构和Batch Normalization。指出了ResNet存在的不足,并提供了代码实现示例,旨在为读者全面了解ResNet提供参考。

2025-06-23 09:10:52 606

原创 GoogLeNet:图像分类神经网络的深度剖析与实践

本文聚焦于GoogLeNet这一经典的图像分类神经网络。介绍了其起源于2014年ImageNet挑战赛,阐述了Inception模块、平均池化等主要特点。详细分析了网络的创新点,包括独特的Inception结构、1x1卷积核降维以及辅助分类器的应用。同时指出该网络存在计算复杂度高和结构复杂的缺点。最后提供了完整的代码示例,展示了如何构建和训练GoogLeNet模型,为相关研究和实践提供了参考。

2025-06-20 19:46:37 960

原创 VggNet:图像识别的深度探索与实践

本文聚焦于VggNet这一经典卷积神经网络模型。先介绍了VggNet的背景信息,包括其得名由来、在竞赛中的表现及设计灵感。重点阐述了其创新点,即通过堆叠3x3卷积核替代大尺度卷积核来减少参数数量。同时指出了该网络存在资源需求大、梯度易消失或爆炸等缺陷。详细分析了VggNet的结构,以VGG16为例介绍其架构特点,并给出了基于PyTorch的代码实现。旨在为读者全面了解VggNet提供参考。

2025-06-20 08:44:58 1154

原创 AlexNet:图像分类领域的里程碑网络及其创新剖析

本文聚焦于图像分类领域的经典网络AlexNet。介绍了AlexNet在2012年ImageNet大规模视觉挑战赛(ILSVRC)中的卓越表现,它的出现推动了深度学习的发展。详细阐述了AlexNet的网络结构,并深入剖析其创新点,如首次运用GPU训练、使用Relu激活函数、提出LRN局部响应归一化(现已弃用)以及在全连接层加入Dropout解决过拟合问题。旨在展示AlexNet的重要地位和对后续深度学习网络发展的深远影响。

2025-06-18 20:31:52 962

原创 LeNet - 5:卷积神经网络的起源、架构、应用及代码实现

本文聚焦于LeNet - 5卷积神经网络,先介绍了CNN的发展背景,强调LeNet - 5在CNN发展历程中的起始作用以及后续AlexNet的突破。详细解析了LeNet - 5的网络架构,涵盖七层结构的具体参数和运算过程,以及所使用的激活函数。同时,介绍了MNIST数据集的概况和文件解析方法,并给出了相应的Python代码。最后,给出了使用PyTorch实现LeNet - 5的代码示例,实现了从理论到实践的全面阐述,有助于读者深入理解和掌握LeNet - 5的相关知识。

2025-06-18 19:49:43 1168

原创 显卡、CUDA、cuDNN及PyTorch-GPU安装使用全指南

本文旨在为读者提供显卡及相关软件的全面知识与操作指南。介绍了显卡基本概念、显存作用,分析显卡、显卡驱动、CUDA之间的关系。说明GPU处理图像数据的优势,提供查看电脑GPU加速条件的方法。详细阐述CUDA和cuDNN的下载、安装、验证步骤,以及环境变量设置。最后指导如何下载安装Pytorch-GPU-pycharm并进行测试,帮助读者完成深度学习环境的搭建。

2025-06-18 15:06:46 1003

原创 多通道卷积理论及多种卷积类型详解

本文围绕多通道卷积理论和多种卷积类型展开。多通道卷积中输入与卷积核通道数、卷积核个数与输出及偏置通道数有特定关系,卷积偏置针对输出特征矩阵各位置。卷积类型包含二维、三维、反卷积、空洞卷积、可分离卷积、扁平卷积和分组卷积等,不同卷积类型在图像处理、特征提取、图像上采样等方面有不同作用和特点。

2025-06-16 18:57:42 993

原创 计算机图像处理:从像素到卷积与池化的深度解析

本文聚焦计算机图像处理,详细解析了图像在计算机中的表示与处理方式。从像素这一基础概念出发,说明图像以像素形式存储,RGB图的颜色由三通道像素值决定,同时给出图像创建与通道拆分代码。进而深入卷积领域,介绍卷积和卷积核概念、卷积计算过程及步长和Padding的影响,探讨卷积核选择奇数大小的原因并附上代码。最后阐述池化操作,包括其原理、常见类型、输出尺寸计算、下采样原理,分析其优缺点并给出手动实现池化的代码。

2025-06-13 11:00:03 720

原创 神经网络:深度剖析过拟合、欠拟合及其泛化能力提升策略

本文旨在探讨神经网络模型训练中常见的过拟合与欠拟合现象,并提供全面的解决方案。文章首先定义了过拟合与欠拟合的特征与成因,随后深入阐述了L1和L2正则化如何通过约束模型参数来降低复杂度、提升泛化性能,并对比了两者的作用机制与应用侧重。接着,详细介绍了Dropout作为另一种有效的防过拟合策略,通过随机失活神经元实现模型集成效应。通过理论分析与代码示例,本文为读者理解并应对神经网络训练中的拟合问题提供了清晰的指导。

2025-06-11 15:23:59 1258

原创 深度学习核心概念:优化器、模型可解释性与欠拟合

本文旨在巩固深度学习基础,聚焦优化器演进、神经网络可解释性与欠拟合现象。文章详述了从BGD到SGD、Adam等主流优化算法的机制与改进作用。接着探讨神经网络可解释性,阐明黑箱挑战、重要性及全连接、Dropout、注意力等提升方法。最后剖析欠拟合表现、原因,并提出增数据、提复杂度、减正则等实用解决方案。本文理论结合代码,构建理解深度学习模型训练与行为的框架。

2025-06-10 20:14:39 844

原创 深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

本文旨在为深度学习初学者提供一个全面的基础入门指南。文章首先从感知机这一神经网络的基石出发,详细讲解了其工作原理和通过调整权重、偏置实现逻辑门的功能,并剖析了其处理非线性问题的局限性。随后,文章引入了多层感知机和全连接神经网络,阐述了其核心结构(输入层、隐藏层、输出层)及各层作用。通过一个实际的拟合案例,文中深入讲解了神经网络的前向计算、参数初始化、损失函数、迭代训练以及至关重要的反向传播(基于链式法则的梯度计算与更新)。此外,文章还介绍了Softmax、交叉熵和独热编码在分类任务中的应用,共同构建了深度学

2025-06-09 20:14:52 800

原创 从数据持久化到网络通信与OpenCV:Qt应用程序开发的深度探索与实战

本文深入探讨Qt高级开发,从数据持久化(QSettings、数据库集成,特别SQLite)到网络编程(TCP Socket、QTcpServer/Socket),强调预处理语句和数据读写。另涵盖Qt集成OpenCV实现人脸检测、程序打包(windeployqt、Inno Setup)。最终以聊天室项目(注册登录、聊天、历史查询)全面展示Qt高级应用开发全流程,旨在为开发者构建稳定、可扩展的Qt应用奠定坚实基础。

2025-05-29 20:14:59 1096

原创 Qt基础终结篇:从文件操作到多线程异步UI,深度解析核心要点

本文全面介绍了Qt中QFileDialog、QFileInfo和QFile的使用,涵盖文件选择、信息获取及读写操作。重点阐述了UI卡顿的成因及多线程解决方案,详细讲解QThread的创建与启动,并深入探讨主线程与子线程间的异步刷新与通信机制,旨在帮助开发者构建高效且响应迅速的Qt应用。

2025-05-27 19:54:51 1037

原创 Qt C++ GUI编程进阶:多窗口交互与事件机制深度解析

本文全面解析Qt C++ GUI编程中的多窗口交互与事件处理。从QWidget基础特性、QMessageBox使用,到QMainWindow主窗口的菜单、工具、状态栏构建,再到Qt对象树的内存管理机制,层层递进。重点阐述了父子窗口间通过成员函数调用和信号槽机制进行数据传递的两种核心策略,并结合实例演示。最后,详细讲解了Qt事件机制,特别是通过覆盖虚函数处理鼠标、键盘、绘制等事件的方法,并提及QPainter在绘图中的应用。

2025-05-26 19:42:22 1157

原创 Qt框架核心组件完全指南:从按钮交互到定时器实现

本指南系统梳理Qt框架的9大核心模块,涵盖按钮控件、下拉列表、数字组件、字符串处理、容器类、泛型变量、跨平台类型、日期时间和定时器,提供属性说明、信号槽机制、Mermaid类图、示例代码及可视化演示,帮助开发者快速掌握Qt跨平台开发的关键技术。

2025-05-19 21:49:31 1174

原创 Qt信号槽机制与UI设计完全指南:从基础原理到实战应用

Qt信号槽通信机制详解与UI设计实战指南,涵盖信号槽参数传递、多对多关系处理、Designer工具操作技巧、布局管理系统及QLabel图片资源管理,附完整代码示例和可视化示意图。

2025-05-15 19:11:42 1679

原创 跨平台开发利器:全面解读Qt框架功能特性与C++实战应用指南

本文系统剖析Qt框架的跨平台特性和C++开发优势,涵盖核心模块功能、环境搭建、项目配置及代码结构解析,通过案例演示QSS样式表应用和信号槽通信机制,对比新旧语法差异,结合多线程、数据库等拓展功能场景,为工业级应用开发提供实践指导。

2025-05-14 19:48:23 1532

原创 C++核心编程解析:模板、容器与异常处理全指南

本文深入探讨C++模板编程实现类型无关逻辑复用的方法,解析STL容器内存管理与性能特征,对比vector/list/map等数据结构适用场景,演示异常捕获链与文件流操作技巧,通过20+代码案例呈现从泛型设计到工程实践的完整知识体系,助力开发者掌握高效、安全的C++编程范式。

2025-05-12 22:14:02 1272

原创 深入解析C++核心特性:运算符重载、继承、多态与抽象类

本文全面解析C++运算符重载、继承、多态与抽象类的核心机制,涵盖赋值运算符深拷贝逻辑、多重继承的二义性解决方案、虚函数动态绑定原理及纯虚函数的接口设计模式,通过典型代码示例展示面向对象编程的代码复用、扩展性与多态优势,为开发者提供实践指导。

2025-05-09 19:31:36 954

原创 C++核心概念全解析:从析构函数到运算符重载的深度指南

本文深度剖析C++中析构函数的资源回收机制、this指针的隐式对象操作特性、static关键字的静态存储控制、const修饰符的多维度不可变约束、友元关系的封装突破策略及运算符重载的多态扩展方法,通过构造函数/析构函数的生命周期对比、静态成员初始化规范、常量成员函数重载实践、友元类双向访问限制等关键技术点,结合动态内存管理与链式调用等典型代码示例,构建完整的C++核心概念知识体系。

2025-05-08 18:46:51 859

原创 C++核心编程全解析:从函数到面向对象的深度探索

本文全面梳理C++核心编程技术,包括函数实现、内存管理、引用机制、字符串处理、面向对象设计及类构造细节,通过对比分析与实践示例,构建从基础到进阶的系统知识体系,助力开发者掌握高效、健壮的C++编码能力。

2025-05-07 18:39:47 1397

原创 C++编程语言:从高效系统开发到现代编程范式的演进之路

本文全面剖析C++编程语言的核心特性与发展脉络,涵盖其底层内存操作、面向对象设计、现代标准演进(C++11/17/20)及开发工具链配置,深入讲解语法结构、控制逻辑、数据存储模型,并结合代码示例展示其在系统级开发和高性能场景中的应用价值。

2025-05-06 20:21:00 912

原创 从对数变换到深度框架:逻辑回归与交叉熵的数学原理及PyTorch实战

本文系统解析逻辑回归的理论基础与工程实现,从数学层面推导对数变换简化连乘计算,并阐明交叉熵作为损失函数的理论依据及其与极大似然估计的关系。针对二分类任务,结合Sigmoid激活函数设计前向传播与反向传播流程,通过Python代码实现参数迭代与决策边界绘制。进一步扩展至多分类场景,对比分析Softmax与二元交叉熵的适配性。最后基于PyTorch框架完成逻辑回归模型的端到端实现,涵盖数据预处理、模型定义、损失函数选择及训练过程可视化,验证理论的有效性并展示深度学习工具的高效性。

2025-04-24 16:23:24 1294

原创 深度学习激活函数与损失函数全解析:从Sigmoid到交叉熵的数学原理与实践应用

本文系统探讨了Sigmoid、tanh、ReLU、Leaky ReLU、PReLU、ELU等激活函数的数学公式、导数特性、优劣势及适用场景,并通过Python代码实现可视化分析。同时深入对比了极大似然估计与交叉熵损失函数的差异,阐述其在分类任务中的核心作用,揭示MSE在分类问题中的局限性及交叉熵的理论优势。

2025-04-23 19:44:18 600

原创 PaddlePaddle线性回归详解:从模型定义到加载,掌握深度学习基础

本文深入讲解了使用PaddlePaddle框架实现线性回归的完整流程,涵盖了模型定义(包括序列方式和类方式)、数据加载、模型保存(基础API和高级API)、模型加载(基础API和高级API)以及模型网络结构查看等关键步骤,旨在帮助读者全面掌握PaddlePaddle框架下线性回归的实现方法,并理解其背后的原理。同时,文章还涉及曲线拟合的理论与实践,以及多种激活函数的特性与应用,为读者构建扎实的深度学习基础。

2025-04-22 19:07:14 1299

原创 PyTorch与TensorFlow模型全方位解析:保存、加载与结构可视化

本文深入探讨了PyTorch和TensorFlow中模型管理的关键方面,包括模型的保存与加载以及网络结构的可视化。涵盖了PyTorch中模型和参数的保存与加载,以及使用多种工具进行模型结构分析。同时,详细介绍了TensorFlow中模型的定义方式、保存方法、加载流程以及模型结构的可视化技术,旨在帮助读者全面掌握两大深度学习框架的模型管理技巧。

2025-04-21 17:41:30 735

原创 PyTorch 线性回归详解:模型定义、保存、加载与网络结构

本文全面阐述了PyTorch框架下线性回归的实现过程,涵盖了模型定义的不同方式(如nn.Sequential、nn.ModuleList等)、模型保存方法(torch.save()),以及模型加载和网络结构查看。结合具体代码示例,旨在帮助读者深入理解并掌握PyTorch在解决线性回归问题中的应用。

2025-04-21 09:42:20 1069

原创 自求导实现线性回归与PyTorch张量详解

本文围绕自求导方法实现线性回归算法展开,详细介绍了算法的理论基础、参数初始化、损失函数设计、迭代过程及反向传播求导机制,并通过Python代码实现线性回归模型训练和可视化,直观呈现模型优化轨迹和损失变化。同时,文章深入讲解了PyTorch框架中的tensor概念,解析了tensor的存储结构、数据类型、步长和偏移,重点阐述了tensor连续性与非连续性的区别及其对计算效率的影响,并介绍了contiguous()方法用于解决非连续tensor问题,结合丰富代码示例,帮助读者理解并掌握PyTorch tenso

2025-04-17 17:27:06 1178

原创 线性回归的前向传播、反向传播与数学求解详解

本文从前向传播的代码实现出发,展示了如何利用线性模型对二维数据进行拟合及误差分析,接着深入讲解了反向传播中的学习率和梯度下降算法的理论基础及优化方法,结合Python代码动态演示了参数更新和损失函数的变化过程;最后,文章通过数学推导详细揭示了线性回归模型参数的计算公式,并用代码实现了数学解法的拟合过程,帮助读者全面掌握线性回归的基本原理、优化方法及编程实现。

2025-04-16 18:24:54 1247

原创 机器学习中的距离度量与优化方法:从曼哈顿距离到梯度下降

本文涵盖机器学习中的关键距离度量(曼哈顿、切比雪夫、余弦等)与优化技术,包括数学公式、Python代码实现及适用场景分析;详细讲解交叉验证方法(HoldOut与K折)的流程与意义;深入剖析前向传播、损失函数(如均方差)及梯度下降的数学基础(导数、偏导数、链式法则),并通过案例展示直线拟合中的误差计算与模型优化过程,为算法实践提供全面参考。

2025-04-15 17:26:08 1076

原创 KNN算法深度解析:从决策边界可视化到鸢尾花分类实战

本文系统讲解了KNN算法的决策边界形成机制、Scikit-learn实现细节及鸢尾花分类实战,涵盖K值选择对边界的影响、API参数解析、数据预处理(归一化/标准化)和数据集划分方法,通过代码示例和可视化分析帮助读者掌握KNN的核心应用技巧。

2025-04-14 18:37:29 1020

原创 从基础到实践:全面解析机器学习与KNN算法的核心原理与应用

本文涵盖机器学习的核心概念、KNN算法原理与实现、应用场景及未来挑战,结合代码示例和可视化分析,帮助读者掌握基础算法并理解其实际应用价值。

2025-04-14 08:52:29 933

原创 OpenCV图像处理全解析:模板匹配、霍夫变换与亮度对比度调整实战指南

本文系统讲解OpenCV的模板匹配、霍夫变换和亮度对比度调整技术,涵盖算法原理、参数解析及Python代码实现,适用于图像识别、边缘检测和画质优化场景。

2025-04-09 16:57:58 958

原创 OpenCV图像处理全解析:从轮廓检测到直方图均衡化的实战指南

本文全面解析了OpenCV中图像处理的核心技术,包括轮廓检测、边缘与轮廓的区别、轮廓查找与绘制方法(如Suzuki算法)、外接矩形与最小外接圆的实现原理(如旋转卡壳法),以及直方图均衡化的基础与自适应算法(CLAHE)。通过代码示例和算法原理解析,帮助读者掌握目标形态分析、对比度增强等实用技能,适用于医学影像、摄影优化、卫星图像处理等场景。

2025-04-08 17:31:11 1030

原创 图像处理中的梯度计算、边缘检测与凸包特征分析技术详解

本文涵盖图像梯度计算(Sobel/Laplacian算子)、Canny边缘检测(降噪、梯度方向、非极大值抑制、双阈值)及凸包算法(基础方法、Graham扫描、QuickHull、Andrew链),结合OpenCV实现,解析技术原理与应用场景。

2025-04-07 17:37:26 1271 2

原创 OpenCV图像处理实战全解析:镜像、缩放、矫正、水印与降噪技术详解

本文系统解析OpenCV图像处理五大实战场景:镜像反转的三种坐标变换模式,图像缩放的尺寸控制与插值方法,透视变换的四点定位原理与三维投影消除,基于二值化模板的水印叠加技术,以及均值/高斯/中值滤波器的噪声消除机制。通过11个完整代码示例,详解关键参数设置与算法选择策略,涵盖flip、resize、warpPerspective、bitwise_and、GaussianBlur等核心函数应用,提供从基础操作到复杂形变矫正的全栈解决方案,为计算机视觉开发提供完备的技术参考。

2025-04-03 16:08:03 1239

数据库SQL入门指南:从基础查询到实战操作详解

如果不想从微云下载,也可以从这里。 选择微云是因为在qq钱包中微云可以开普通会员一个月只要10元

2025-02-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除