jetson agx orin的anaconda、修改镜像源、jtop、jetpack、CUDA、CUDNN安装、截屏

本文详细介绍了如何在JetsonAGXXavier上安装Anaconda,切换至国内镜像源,以及如何安装和配置Jtop、jetpack、CUDA和CUDNN。包括截图方法、镜像源管理、软件安装步骤和常见问题解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

jetson agx orin的anaconda、修改镜像源、jtop、jetpack、CUDA、CUDNN安装、截屏

如何截屏

按键盘上的printscreen键,我的键盘上PRT SC的缩写键,截orin的全屏如下
在这里插入图片描述

然后可以在文件中的picture中找到截屏可以移动到所插入的U盘中
在这里插入图片描述

Anaconda安装

步骤一:在清华镜像anaconda地址下载Linux版本的anaconda
我选择的是Anaconda3-2021.11-Linux-aarch64.sh
在这里插入图片描述
步骤二:2.在用户文件夹下新建一个名为anaconda的文件夹,并将刚刚下载的文件放在此文件夹中
在这里插入图片描述
在这里插入图片描述
步骤三:右键点击文件夹,点击在终端中打开,运行如下代码解压下载:

chmod +x Anaconda3-2021.11-Linux-aarch64.sh 
./Anaconda3-2021.11-Linux-aarch64.sh

在这里插入图片描述
按回车
在这里插入图片描述
输入yes
在这里插入图片描述在这里插入图片描述
输入yes
在这里插入图片描述
安装完成
在这里插入图片描述
步骤四:安装好conda后,先关闭终端,然后看到前面有了一个(base)其实就是成功了,可以再进行验证,输入如下代码查看anaconda版本号

conda init
conda --version

在这里插入图片描述在这里插入图片描述
如果遇到下列问题,bash: soure: command not found

bash: soure: command not found

在这里插入图片描述
可通过以下方式解决
在终端中输入下列代码

#打开~/.bashrc
sudo gedit ~/.bashrc

在这里插入图片描述
然后输入密码,会出现下列界面,鼠标滑到文件最下面,将空格,或者不需要的内容删除掉,最中结果如图所示,然后保存即可
在这里插入图片描述
问题就会解决
在这里插入图片描述

若还是显示找不到conda指令,可尝试下方代码:

# 将anaconda的bin目录加入PATH,根据版本不同,也可能是~/anaconda3/bin
echo 'export PATH="~/anaconda3/bin:$PATH"' >> ~/.bashrc
# 更新bashrc以立即生效
source ~/.bashrc

在这里插入图片描述

步骤五:进行初始化

conda init

<think>我们正在为Jetson AGX Orin设备安装Anaconda,系统环境是JetPack 5.1.2(基于Ubuntu 20.04)。由于Jetson是ARM架构,因此不能直接使用x86架构的Anaconda安装包,需要选择适用于ARM64的版本。 目前,Anaconda官方并不提供ARM64版本的安装包,但我们可以使用Miniforge或Miniconda,它们提供了ARM64的支持。Miniforge是专门为ARM64架构设计的,并且使用conda-forge作为默认的软件源。 安装步骤: 1. 下载适用于ARM64的Miniforge安装脚本。 2. 运行安装脚本。 3. 初始化conda。 注意:由于Jetson AGX Orin是ARM64架构,我们选择Miniforge(或者Miniconda)的ARM64版本。 具体步骤: 步骤1:下载Miniforge安装脚本 打开终端,执行以下命令下载安装脚本: ```bash wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-aarch64.sh ``` 步骤2:运行安装脚本 给脚本添加执行权限并运行: ```bash chmod +x Miniforge3-Linux-aarch64.sh ./Miniforge3-Linux-aarch64.sh ``` 按照提示进行安装,通常按回车继续,阅读许可协议(按q退出阅读),然后输入yes同意。安装程序会询问安装路径,默认是`~/miniforge3`,可以按需修改。最后,会询问是否初始化conda,建议选择yes,这样每次打开终端会自动激活base环境。 步骤3:激活conda 如果安装时选择了初始化,那么重新打开终端后,conda会自动激活。如果没有,可以手动初始化: ```bash source ~/.bashrc ``` 步骤4:验证安装 执行以下命令验证conda是否安装成功: ```bash conda --version ``` 如果显示版本号,则安装成功。 注意:由于conda-forge源可能包含一些预编译的ARM64软件包,因此后续使用conda安装其他包时,建议优先使用conda-forge通道。 另外,由于Jetson AGX Orin的GPU是NVIDIA的,如果需要使用GPU,还需要安装相应的CUDAcuDNNJetPack 5.1.2已经包含了CUDA 11.4和cuDNN,因此不需要通过conda安装这些。但是,在conda环境中安装深度学习框架(如TensorFlow或PyTorch)时,需要确保安装的版本与系统CUDA版本兼容。 引用说明:本文参考了在Jetson AGX Orin安装Anaconda的一般方法[^1]以及安装PyTorch的版本选择经验[^2]。 相关问题: 1. 如何在Jetson AGX Orin安装TensorFlow? 2. 如何在Jetson AGX Orin安装PyTorch? 3. 如何管理多个conda环境以适配不同的项目需求?</think>### Jetson AGX Orin JetPack 5.1.2 安装 Anaconda 指南 由于 Jetson AGX Orin 采用 ARM64 架构,而官方 Anaconda 不支持 ARM 平台,我们需使用替代方案 **Miniforge**(专为 ARM 架构优化的 Conda 发行版)。以下是完整安装流程: --- #### 步骤 1:下载 ARM64 版 Miniforge ```bash # 下载安装脚本 (适用 JetPack 5.1.2 的 Ubuntu 20.04) wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-aarch64.sh # 授予执行权限 chmod +x Miniforge3-Linux-aarch64.sh ``` --- #### 步骤 2:运行安装脚本 ```bash # 执行安装 (默认安装到 ~/miniforge3) ./Miniforge3-Linux-aarch64.sh # 按提示操作: # 1. 阅读协议后输入 yes # 2. 按 Enter 确认安装路径 # 3. 输入 yes 初始化 Conda ``` --- #### 步骤 3:激活 Conda 环境 ```bash # 刷新终端配置 source ~/.bashrc # 若使用 zsh 则改为 source ~/.zshrc # 验证安装 conda --version # 应显示类似:conda 23.11.0 ``` --- #### 步骤 4:配置环境(关键) ```bash # 创建 Python 3.9 环境(兼容 JetPack 5.1.2) conda create -n jetson_env python=3.9 # 激活环境 conda activate jetson_env # 设置 conda-forge 为默认通道(确保 ARM 包兼容性) conda config --add channels conda-forge conda config --set channel_priority strict ``` --- #### 验证与问题排查 1. **检查架构兼容性**: ```bash uname -m # 应输出 aarch64 ``` 2. **解决 libmamba 错误**: ```bash conda update -n base conda -c conda-forge ``` 3. **安装常用包测试**: ```bash conda install numpy pandas ``` > ⚠️ **重要提示**: > - 避免直接安装官方 Anaconda(x86_64 架构不兼容 ARM)[^1] > - 深度学习库(如 PyTorch/TensorFlow)需额外安装 Jetson 专用版本[^2] --- ### 相关问题 1. 如何在 Jetson AGX Orin安装 PyTorch 并启用 GPU 加速? 2. Miniforge 与 Anaconda 在 ARM 架构下的性能差异有哪些? 3. 如何解决 Conda 环境与 JetPack 内置 CUDA 的兼容性问题? [^1]: Jetson AGX Orin 安装 Anaconda 替代方案 [^2]: NVIDIA AGX Orin 的 PyTorch 版本选择指南
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小阮同学在努力

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值