【机器学习】正则化&损失函数和梯度下降法

 一、正则化

1.概念

正则化就是说给损失函数加上一些限制,通过这种规则去规范他们再接下来的循环迭代中,不要自我膨胀。

 我们可以看到,第一张图片拟合程度过低,导致测试结果不尽人意;

第二张图片是刚刚合适的,拟合程度恰到好处,测试集中我们得到的准确率是最高的,同时泛化能力也是最强的。

第三张图片拟合程度过高,每个点都能通过,导致不能起到预测的作用,丧失了模型泛化能力

2.过拟合、欠拟合介绍及解决刨析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值