一、正则化
1.概念
正则化就是说给损失函数加上一些限制,通过这种规则去规范他们再接下来的循环迭代中,不要自我膨胀。
我们可以看到,第一张图片拟合程度过低,导致测试结果不尽人意;
第二张图片是刚刚合适的,拟合程度恰到好处,测试集中我们得到的准确率是最高的,同时泛化能力也是最强的。
第三张图片拟合程度过高,每个点都能通过,导致不能起到预测的作用,丧失了模型泛化能力。
正则化就是说给损失函数加上一些限制,通过这种规则去规范他们再接下来的循环迭代中,不要自我膨胀。
我们可以看到,第一张图片拟合程度过低,导致测试结果不尽人意;
第二张图片是刚刚合适的,拟合程度恰到好处,测试集中我们得到的准确率是最高的,同时泛化能力也是最强的。
第三张图片拟合程度过高,每个点都能通过,导致不能起到预测的作用,丧失了模型泛化能力。