自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 昇思25天学习打卡营第25天 | RNN实现情感分类

本文使用MindSpore实现基于RNN网络的情感分类模型的过程。包括数据准备,如下载IMDB数据集和Glove词向量,加载并预处理数据;模型构建,采用nn.Embedding、nn.LSTM和nn.Dense结构,规避梯度消失问题;设置损失函数和优化器;设计训练和评估逻辑;进行模型训练与保存,根据验证集loss选择最优模型;最后进行模型加载与测试,还能对自定义输入进行情感分类预测。通过该模型,可对影评语句进行情感分类,具有较好的效果。

2024-07-23 16:01:50 806

原创 昇思25天学习打卡营第24天 | LSTM+CRF序列标注

本文介绍了如何使用长短期记忆网络(LSTM)和条件随机场(CRF)进行序列标注任务。通过结合LSTM的序列特征提取和CRF的标签依赖建模,构建了一个完整的命名实体识别模型。教程详细解释了模型架构、数据准备、训练过程,并提供了完整的代码实现和结果评估方法。

2024-07-22 21:49:21 795

原创 昇思25天学习打卡营第23天 | Pix2Pix实现图像转换

Pix2Pix是一种基于条件生成对抗网络的深度学习模型,广泛应用于图像到图像的转换任务,如将语义标签图转换为真实图片。它利用U-Net结构的生成器和PatchGAN结构的判别器,在对抗训练中提升图像生成质量。通过Adam优化器和学习率衰减策略进行训练,记录生成器和判别器的损失以监控进度。训练完成后,模型能够对新数据进行推理,生成高质量的图像。本教程提供了使用MindSpore框架的完整代码实现,包括数据加载、网络构建、训练、推理及结果展示,是学习图像翻译任务的重要资源。

2024-07-21 17:35:46 1051

原创 昇思 25 天学习打卡营第 22 天 | GAN图像生成

生成器(Generator):生成看起来像训练图像的“假”图像。判别器(Discriminator):判断图像是真实的训练图像还是生成器生成的图像。GAN通过生成模型和判别模型的互相博弈学习产生高质量的输出。生成式对抗网络(Generative Adversarial Networks,GAN)是一种生成式机器学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。最初,GAN由Ian J. Goodfellow于2014年发明,并在论文生成器的任务是生成看起来像训练图像的“假”图像;

2024-07-20 20:03:33 1125

原创 昇思 25 天学习打卡营第 21 天 | Diffusion扩散模型

如果将Diffusion与其他生成模型(如Normalizing Flows、GAN或VAE)进行比较,它并没有那么复杂,它们都将噪声从一些简单分布转换为数据样本,Diffusion也是从纯噪声开始通过一个神经网络学习逐步去噪,最终得到一个实际图像。Diffusion对于图像的处理包括以下两个过程:我们选择的固定(或预定义)正向扩散过程 𝑞𝑞 :它逐渐将高斯噪声添加到图像中,直到最终得到纯噪声。

2024-07-19 12:51:16 966

原创 昇思 25 天学习打卡营第 20 天 | DCGAN生成漫画头像

今天是参加昇思学习打卡营的第20天,学习内容是DCGAN生成漫画头像。

2024-07-18 18:33:32 753

原创 昇思 25 天学习打卡营第 19 天 | CycleGAN图像风格迁移互换

CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络,来自论文。该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。该模型一个重要应用领域是域迁移(Domain Adaptation),可以通俗地理解为图像风格迁移。

2024-07-17 18:42:29 953

原创 昇思 25 天学习打卡营第 18 天 | 基于MobileNetv2的垃圾分类

MobileNet网络是由Google团队于2017年提出的专注于移动端、嵌入式或IoT设备的轻量级CNN网络,相比于传统的卷积神经网络,MobileNet网络使用深度可分离卷积(Depthwise Separable Convolution)的思想在准确率小幅度降低的前提下,大大减小了模型参数与运算量。并引入宽度系数 α和分辨率系数 β使模型满足不同应用场景的需求。

2024-07-16 23:04:25 801

原创 昇思 25 天学习打卡营第 17 天 | K近邻算法实现红酒聚类

K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,最初由 Cover和Hart于1968年提出(Cover等人,1967),是机器学习最基础的算法之一。它正是基于以上思想:要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接近的k个样本,统计出这些样本的类别并进行投票,票数最多的那个类就是分类的结果。KNN的三个基本要素:K值,一个样本的分类是由K个邻居的“多数表决”确定的。K值越小,容易受噪声影响,反之,会使类别之间的界限变得模糊。

2024-07-15 15:56:33 1039

原创 昇思 25 天学习打卡营第 16 天 | Transformer图像分类

近些年,随着基于自注意(Self-Attention)结构的模型的发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的模型。ViT则是自然语言处理和计算机视觉两个领域的融合结晶。在不依赖卷积操作的情况下,依然可以在图像分类任务上达到很好的效果。

2024-07-14 21:35:04 929

原创 昇思 25 天学习打卡营第 15 天 | SSD目标检测

SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法。使用Nvidia Titan X在VOC 2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(mean Average Precision)以及59FPS;对于512x512的网络,达到了76.9%mAP ,超越当时最强的Faster RCNN(73.2%mAP)。具体可参考论文[1]。

2024-07-12 20:51:25 1283

原创 Task3: Baseline2笔记 #AI夏令营 #Datawhale #夏令营

Task3:进阶 baseline2【微调方向】 + 知识点讲解,链接如下:Docs。

2024-07-06 20:00:36 876

原创 大模型技术方向Task1笔记 #AI夏令营 #Datawhale #夏令营

实践步骤:跑通baseline → 尝试个人idea→尝试进阶baseline。

2024-07-02 21:27:15 1093

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除