一、插入排序的工作原理
插入排序,一般也被称为直接插入排序。对于少量元素的排序,它是一个有效的算法 。插入排序是一种最简单的排序方法,它的基本思想是将一个记录插入到已经排好序的有序表中,从而一个新的、记录数增1的有序表。在其实现过程使用双层循环,外层循环对除了第一个元素之外的所有元素,内层循环对当前元素前面有序表进行待插入位置查找,并进行移动
二、逻辑实现
[54,226,93,17] #升序排序 [54, 226,93,17] #首先将列表分成两块(以第一个元素为划分),一块为有序列表,一块为无序列表 [54,226, 93,17] #第二个元素大于第一个元素,则追加到有序列表末尾,若小于第一个元素,则插入到第一个元素之前 [54,93,226, 17] #第三个元素小于第二个元素,则插入到第二个元素之前,第三个元素大于第一个元素,则不用排序 [54,93,17,226 ] #第四个元素小于第二个元素,则插入到第二个元素之前 [54,17,93,226 ] #第四个元素小于第三个元素,又插入到第三个元素之前 [17,54,93,226 ] #第四个元素小于第一个元素,再次插入到第一个元素之前,实现最终的排序
三、代码实现
#插入排序
def insert_sort(alist):
n=len(alist)
for j in range(1,n):
i=j
while i>0: #和有序列表中的每个元素进行比较(从最后一个开始)
if alist[i]<alist[i-1]: #如果当前元素比前一个元素小,则进行交换
alist[i],alist[i-1] = alist[i-1],alist[i]
else: #否则已经是有序列表,不需要交换,则退出循环
break
i-=1
if __name__=="__main__":
alist=[54,226,93,17]
print("原数组:")
print(alist)
insert_sort(alist)
print("排序后的数组:")
print(alist)
结果展示:
原数组:
[54, 226, 93, 17]
排序后的数组:
[17, 54, 93, 226]
四、插入排序的时间复杂度及其稳定性
#最坏时间复杂度 n*n=O(n^2) 最小值是列表最后一个元素 [17, 20, 31, 44, 54, 55, 77, 93, 226,15] #最优时间复杂度 n*1 = O(n) 最大值是列表最后一个元素 [17, 20, 31, 44, 54, 55, 77, 93, 226,1000] #稳定性:稳定性(顺序是相同的) [17, 20, 31, 44, 54, 55, 77, 93, 77,226] [17, 20, 31, 44, 54, 55, 77,77, 93,226]