题目
1.链接
2.题目描述
3.解题思路
动态规划
这里的每一级楼梯都是有价格的,想要跨过它,就要交保护费,而我们每次可以从前一个楼梯或者前两个楼梯爬上来,所以,不难写出动态规划方程:
状态定义:dp[i] 表示到达第 i 级楼梯所需要的最小代价(注意:是到达,还没有跨过)。
转移方程:dp[i] = min(dp[i-2]+cost[i-2], dp[i-1]+cost[i-1]),要想到达 i,要么交 i-2 的保护费走两步上来,要么交 i-1 的保护费走一步上来。
初始值:dp[0] = dp[1] = 0,可以直接从 0 或 1 号楼梯开始,所以到达它们不需要花费代价。
返回值:dp[n],表示到达第 n 级楼梯的最小代价,也就是跨过第 n-1 的最小代价。
优化:可以看到转移方程中只与前两项有关,所以,可以声明两个变量轮动减小空间。
(1) 为了方便求最小值,我们实现一个