【路面分类】基于灰度共生矩阵图形纹理检测结合支持向量机实现路面状况分类附Matlab代码

本文介绍了利用灰度共生矩阵(GLCM)提取图像纹理特征,并结合支持向量机(SVM)进行路面状况分类的方法。详细讨论了GLCM的统计特性,提供了MATLAB代码示例,分析了不同参数对纹理特征的影响,并展示了仿真结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

图像的特征提取是图像的识别和分类、基于内容的图像检索、图像数据挖掘等研究内容的基础性工作,其中图像的纹理特征对描述图像内容具有重要意义,纹理特征提取已成为图像领域研究的一个重要方法。本文探讨了基于灰度共生矩阵( GLCM) 的纹理特征提取方法,给出了基于 MATLAB 的简便实现代码,分析了共生矩阵各个构造参数对构造共生矩阵的影响。实现基于灰度共生矩阵( GLCM) 的特定图像的纹理特征提取。

1.1 纹理

纹理特征是一种重要的视觉线索,是图像中普遍存在、而又难以描述的特征。纹理作为物体表面的一种基本属性,广泛存在自然界中,是描述和识别物体的一种极为重要的特征。纹理分析技术一直是计算机视觉、图像处理、图像分析、图像检索等的重要应用。纹理分析的研究内容主要包括:纹理分类和分割、纹理合成、纹理检索和由纹理恢复形状等。这些研究内容的一个最基本的问题是纹理特征提取。

1.2 纹理特征

图像的纹理特征描述了在图像中反复出现的局部规律和像素排列规则,反映了宏观意义上灰度变化的一些规律,图像可以看成是不同纹理区域的组合,纹理是对局部区域像素之间关系的一种度量。纹理特征可用于定量描述图像中的信息。

1.3 纹理特征提取方法

纹理特征提取的主要方法有统计方法、模型方法、信号处理方法和结构方法。本文所用的是统计方法;统计方法是基于像元及其邻域的灰度属性,研究纹理区域中的统计特性。实践证明,灰度共生矩阵在统计方法中具有很旺盛的生命,用该方法提取的纹理特征具有很好的鉴别能力。

1.4 灰度共生矩阵

共生矩阵用两个位置像素的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值