基于相似日的风电短期出力预测研究


1. 风电短期出力预测基本概念与重要性

1.1 时间尺度定义
  • 短期预测:覆盖未来1-3天(24-72小时),时间间隔为分钟或小时级,是电力交易与调度的核心依据。其预测精度直接影响机组组合优化与市场竞价策略。
  • 超短期预测(≤4小时):用于实时调度控制,降低风电波动对电网频率的冲击。
  • 中期/长期预测:服务于设备维护与能源规划,非本文重点。
1.2 预测方法分类
方法类型原理局限性
物理方法基于数值天气预报(NWP)与风电场地理模型转换风速,结合功率曲线推算出力依赖高精度气象数据,复杂地形建模误差大
统计方法通过历史数据学习气象-功率映射关系(如回归分析、卡尔曼滤波)对非线性波动适应性差
相似日法核心创新点:筛选气象特征相似的历史日,加权生成预测值依赖相似日评价函数精度
1.3 预测价值
  • 并网稳定性:高精度预测可减少10%-30%的备用容量需求。
  • 经济性:预测误差每降低1%,电力系统运行成本可下降数百万美元级。

2. 相似日方法的核心原理与技术演进

2.1 基本流程
输入预测日气象数据
构建日特征向量
计算历史日相似度
选取Top-K相似日
加权平均历史出力数据
生成预测出力曲线
  • 特征向量:风速、温度、气压等气象因子的时序数据经归一化处理。
  • 相似度评价:早期采用关联系数/夹角余弦,现升级为曲线匹配算法(如Fréchet距离)。
2.2 技术突破:离散Fréchet距离匹配
  • 优势:同时捕捉风速曲线的幅值相似性变化趋势相似性,解决传统方法忽略时序波动的问题。
    dFreˊchet(P,Q)=min⁡α,βmax⁡t∈[0,1]∥P(α(t))−Q(β(t))∥d_{Fréchet}(P,Q) = \min_{\alpha,\beta} \max_{t \in [0,1]} \Vert P(\alpha(t)) - Q(\beta(t)) \VertdFreˊchet(P,Q)=α,βmint[0,1]maxP(α(t))Q(β(t))
    其中P,QP,QP,Q为两条风速曲线,α,β\alpha,\betaα,β为参数化路径。
  • 实验验证:在云南风电场应用中,Fréchet距离匹配使风速曲线相似度误差降低18.7%。
2.3 相似日数量优化
  • 关键结论:相似日数量mmm需平衡样本代表性冗余信息
    • m<5m<5m<5:样本空间覆盖不足
    • m>10m>10m>10:引入噪声且延长训练时间
    • 最优值m=7m=7m=7(经网格搜索验证,对应最小RMSE=4.5)

3. 影响风电出力的关键气象因子

3.1 主导因子分析
气象因子影响机制敏感度排序
风速风机出力与风速立方成正比所有场景首要因子
风向影响风机迎风效率大风场景第2位
温度改变空气密度 ρ=PR⋅T\rho = \frac{P}{R \cdot T}ρ=RTPPPP气压,RRR气体常数)覆冰场景第3位
气压影响空气密度与风机转换效率系统性降水场景第3位
3.2 极端天气下的因子重构
  • 低温寒潮:温度权重提升至0.6(常规0.3)
  • 大风切机:仅保留风速单一因子(相关系数>0.9)

4. 相似日匹配算法创新

4.1 多因子动态加权
  • 熵权法赋权:消除主观偏差,根据气象因子信息熵动态分配权重:
    wj=1−Sjn−∑j=1nSj,Sj=−1ln⁡n∑i=1nPijln⁡Pijw_j = \frac{1 - S_j}{n - \sum_{j=1}^{n} S_j}, \quad S_j = -\frac{1}{\ln n} \sum_{i=1}^{n} P_{ij} \ln P_{ij}wj=nj=1nSj1Sj,Sj=lnn1i=1nPijlnPij
    其中SjS_jSj为第jjj个因子的信息熵,PijP_{ij}Pij为标准化概率。
  • 优化算法调参:蚁狮算法(ALO)自适应调整季节/地域差异的权重系数,预测误差降低12.3%。
4.2 混合预测模型架构
相似日筛选
KECA特征提取
SVM训练
出力预测
  • KECA核熵成分分析:从高维气象数据中提取非线性主元,解决特征冗余问题。

  • 效果对比(云南风电场案例):

    模型RMSE(%)训练时间
    传统SVM19.83.2h
    相似日-SVM12.41.1h
    相似日-KECA-SVM8.60.7h
    改进模型在风速突变时段(如采样点40-60)误差降低达37%。

5. 历史数据预处理流程

5.1 异常值处理
  • 邻近均值填补法:利用风机惯性特性,以t−kt-ktkt−1t-1t1时刻均值修正ttt时刻异常值:
    P^t=1k∑i=1kPt−i\hat{P}_t = \frac{1}{k} \sum_{i=1}^{k} P_{t-i}P^t=k1i=1kPti
    其中kkk取4(15分钟间隔)。
5.2 缺失值处理
  • 箱线图检测:定义[Q1−1.5IQR,Q3+1.5IQR][Q1-1.5IQR, Q3+1.5IQR][Q11.5IQR,Q3+1.5IQR]为合理范围,超限视为异常。
  • LOCF填补 (Last Observation Carried Forward):对连续缺失段采用季节分解填补(STL算法)。

6. 技术挑战与未来方向

6.1 现存问题
  • 气象突变响应滞后:相似日匹配在寒潮/台风场景误差增大15%-20%
  • 多风电场协同预测:场站间时空关联未充分利用
6.2 突破方向
  • 图神经网络(GNN)应用:将风电场抽象为节点,风速传递关系为边,实现多场站联合预测
  • 隐私保护计算:联邦学习框架下加密气象数据,满足GDPR要求
  • 小样本学习:针对罕见天气(如沙尘暴),通过迁移学习提升模型泛化性

结论

相似日方法通过Fréchet距离匹配KECA-SVM架构,有效解决了风电出力的非线性预测难题,将短期预测误差控制在8%-10%内。未来需结合动态权重优化多源数据融合隐私计算技术,进一步提升复杂气象条件下的预测鲁棒性。该技术不仅适用于风电,亦为光伏出力预测(如)提供跨领域参考。


参考文献
Fan J. Short Term Load Forecasting of Power System. 2025.
廖旋焕等. 电力系统短期负荷预测方法综述. 2011.
张颖超等. 基于相似日和特征提取的短期风电功率预测. 2020.
陶玉波等. 短期风电功率预测概念和模型与方法. 2018; 风电场功率预测原理与模型分析. 2025.
重庆理工大学学报. 2022.
黄文琦等. 基于多源数据图表示学习的风电出力预测方法. 2023.
高影响天气对风电开发的影响研究. 2024; 低温寒潮预测技术. 2024.
Yang Z. et al. Short-Term Wind Power Forecast Based on STL-IAOA-iTransformer. 2025.
吴振龙等. 基于LSTM和粒子群算法的风电功率预测. 2024.
熵权法与蚁狮优化在相似日选取中的应用. 2020; 周新茂等. 基于相似日理论的短期光伏预测. 2022.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab建模攻城师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值