1. 风电短期出力预测基本概念与重要性
1.1 时间尺度定义
- 短期预测:覆盖未来1-3天(24-72小时),时间间隔为分钟或小时级,是电力交易与调度的核心依据。其预测精度直接影响机组组合优化与市场竞价策略。
- 超短期预测(≤4小时):用于实时调度控制,降低风电波动对电网频率的冲击。
- 中期/长期预测:服务于设备维护与能源规划,非本文重点。
1.2 预测方法分类
方法类型 | 原理 | 局限性 |
---|---|---|
物理方法 | 基于数值天气预报(NWP)与风电场地理模型转换风速,结合功率曲线推算出力 | 依赖高精度气象数据,复杂地形建模误差大 |
统计方法 | 通过历史数据学习气象-功率映射关系(如回归分析、卡尔曼滤波) | 对非线性波动适应性差 |
相似日法 | 核心创新点:筛选气象特征相似的历史日,加权生成预测值 | 依赖相似日评价函数精度 |
1.3 预测价值
- 并网稳定性:高精度预测可减少10%-30%的备用容量需求。
- 经济性:预测误差每降低1%,电力系统运行成本可下降数百万美元级。
2. 相似日方法的核心原理与技术演进
2.1 基本流程
- 特征向量:风速、温度、气压等气象因子的时序数据经归一化处理。
- 相似度评价:早期采用关联系数/夹角余弦,现升级为曲线匹配算法(如Fréchet距离)。
2.2 技术突破:离散Fréchet距离匹配
- 优势:同时捕捉风速曲线的幅值相似性与变化趋势相似性,解决传统方法忽略时序波动的问题。
dFreˊchet(P,Q)=minα,βmaxt∈[0,1]∥P(α(t))−Q(β(t))∥d_{Fréchet}(P,Q) = \min_{\alpha,\beta} \max_{t \in [0,1]} \Vert P(\alpha(t)) - Q(\beta(t)) \VertdFreˊchet(P,Q)=α,βmint∈[0,1]max∥P(α(t))−Q(β(t))∥
其中P,QP,QP,Q为两条风速曲线,α,β\alpha,\betaα,β为参数化路径。 - 实验验证:在云南风电场应用中,Fréchet距离匹配使风速曲线相似度误差降低18.7%。
2.3 相似日数量优化
- 关键结论:相似日数量mmm需平衡样本代表性与冗余信息:
- m<5m<5m<5:样本空间覆盖不足
- m>10m>10m>10:引入噪声且延长训练时间
- 最优值:m=7m=7m=7(经网格搜索验证,对应最小RMSE=4.5)
3. 影响风电出力的关键气象因子
3.1 主导因子分析
气象因子 | 影响机制 | 敏感度排序 |
---|---|---|
风速 | 风机出力与风速立方成正比 | 所有场景首要因子 |
风向 | 影响风机迎风效率 | 大风场景第2位 |
温度 | 改变空气密度 ρ=PR⋅T\rho = \frac{P}{R \cdot T}ρ=R⋅TP(PPP气压,RRR气体常数) | 覆冰场景第3位 |
气压 | 影响空气密度与风机转换效率 | 系统性降水场景第3位 |
3.2 极端天气下的因子重构
- 低温寒潮:温度权重提升至0.6(常规0.3)
- 大风切机:仅保留风速单一因子(相关系数>0.9)
4. 相似日匹配算法创新
4.1 多因子动态加权
- 熵权法赋权:消除主观偏差,根据气象因子信息熵动态分配权重:
wj=1−Sjn−∑j=1nSj,Sj=−1lnn∑i=1nPijlnPijw_j = \frac{1 - S_j}{n - \sum_{j=1}^{n} S_j}, \quad S_j = -\frac{1}{\ln n} \sum_{i=1}^{n} P_{ij} \ln P_{ij}wj=n−∑j=1nSj1−Sj,Sj=−lnn1i=1∑nPijlnPij
其中SjS_jSj为第jjj个因子的信息熵,PijP_{ij}Pij为标准化概率。 - 优化算法调参:蚁狮算法(ALO)自适应调整季节/地域差异的权重系数,预测误差降低12.3%。
4.2 混合预测模型架构
-
KECA核熵成分分析:从高维气象数据中提取非线性主元,解决特征冗余问题。
-
效果对比(云南风电场案例):
模型 RMSE(%) 训练时间 传统SVM 19.8 3.2h 相似日-SVM 12.4 1.1h 相似日-KECA-SVM 8.6 0.7h 改进模型在风速突变时段(如采样点40-60)误差降低达37%。
5. 历史数据预处理流程
5.1 异常值处理
- 邻近均值填补法:利用风机惯性特性,以t−kt-kt−k至t−1t-1t−1时刻均值修正ttt时刻异常值:
P^t=1k∑i=1kPt−i\hat{P}_t = \frac{1}{k} \sum_{i=1}^{k} P_{t-i}P^t=k1i=1∑kPt−i
其中kkk取4(15分钟间隔)。
5.2 缺失值处理
- 箱线图检测:定义[Q1−1.5IQR,Q3+1.5IQR][Q1-1.5IQR, Q3+1.5IQR][Q1−1.5IQR,Q3+1.5IQR]为合理范围,超限视为异常。
- LOCF填补 (Last Observation Carried Forward):对连续缺失段采用季节分解填补(STL算法)。
6. 技术挑战与未来方向
6.1 现存问题
- 气象突变响应滞后:相似日匹配在寒潮/台风场景误差增大15%-20%
- 多风电场协同预测:场站间时空关联未充分利用
6.2 突破方向
- 图神经网络(GNN)应用:将风电场抽象为节点,风速传递关系为边,实现多场站联合预测
- 隐私保护计算:联邦学习框架下加密气象数据,满足GDPR要求
- 小样本学习:针对罕见天气(如沙尘暴),通过迁移学习提升模型泛化性
结论
相似日方法通过Fréchet距离匹配与KECA-SVM架构,有效解决了风电出力的非线性预测难题,将短期预测误差控制在8%-10%内。未来需结合动态权重优化、多源数据融合及隐私计算技术,进一步提升复杂气象条件下的预测鲁棒性。该技术不仅适用于风电,亦为光伏出力预测(如)提供跨领域参考。
参考文献
Fan J. Short Term Load Forecasting of Power System. 2025.
廖旋焕等. 电力系统短期负荷预测方法综述. 2011.
张颖超等. 基于相似日和特征提取的短期风电功率预测. 2020.
陶玉波等. 短期风电功率预测概念和模型与方法. 2018; 风电场功率预测原理与模型分析. 2025.
重庆理工大学学报. 2022.
黄文琦等. 基于多源数据图表示学习的风电出力预测方法. 2023.
高影响天气对风电开发的影响研究. 2024; 低温寒潮预测技术. 2024.
Yang Z. et al. Short-Term Wind Power Forecast Based on STL-IAOA-iTransformer. 2025.
吴振龙等. 基于LSTM和粒子群算法的风电功率预测. 2024.
熵权法与蚁狮优化在相似日选取中的应用. 2020; 周新茂等. 基于相似日理论的短期光伏预测. 2022.