基于小波包能量特征与混合智能算法优化极限学习机的轴承故障诊断研究

基于小波包能量特征与混合智能算法优化极限学习机的轴承故障诊断研究


1. 引言

轴承故障诊断对工业设备安全至关重要。传统方法依赖单一信号特征和浅层模型,存在精度低、泛化差的问题。本研究提出 小波包能量特征提取 结合 混合智能算法(灰狼GWO+粒子群PSO+鲸鱼WOA+蝴蝶BOA)优化极限学习机(ELM) 的创新框架,实现高精度故障诊断。核心突破在于:

  • 小波包分解层数的自适应优化机制
  • 四算法协同优化ELM参数的高效搜索架构
  • 故障类型驱动的特征-模型协同设计

2. 理论背景与技术原理
2.1 小波包能量特征提取
  • 分解层数优化原理
    信号频带分辨率与层数正相关,但层数过多导致计算爆炸和信噪比下降。最优层数 mmm<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab建模攻城师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值