基于灰狼算法优化高斯过程回归(GWO-GPR)的单变量时序预测

基于灰狼算法优化高斯过程回归(GWO-GPR)的单变量时序预测

灰狼优化算法(GWO)和高斯过程回归(GPR)进行单变量时间序列预测。该模型利用GWO优化GPR的超参数,提高预测精度和泛化能力。

%% 基于灰狼算法优化高斯过程回归(GWO-GPR)的单变量时序预测
% 作者: MATLAB技术助手
% 日期: 2023年12月15日
% 描述: 使用灰狼算法优化高斯过程回归的超参数,实现单变量时间序列预测

clear; clc; close all;
warning('off', 'all'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab建模攻城师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值