CDA level1 学习笔记1

文章介绍了数据分析、数据挖掘和大数据的基本概念,强调它们在解决业务问题中的作用。数据分析的目标是理性决策,其方法包括结构化分析和矩阵分析。不同角色如战略规划、市场营销和业务运营在数据分析中承担不同职责。职业道德涉及数据的真实性和安全性,同时提到了欧盟GDPR和中国相关法律对隐私和数据安全的要求。

数据分析基本概念

数据分析(Data Analysis):是以数据为分析对象,以探索数据内的有用信息为主要途径,以解决业务需求为最终目标

数据挖掘(Data Mining):是用人工智能、机器学习、统计学和数据库的交叉方法在相对较大型的数据集中发现模式的计算过程

大数据(Big Data):无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。大量、高速、多样、低价值密度、真实性

数据分析目的:利用数据理性思考和决策,解决业务需求

数据分析意义

1、避免主观谬误

2、提高判断效率,易推广易迭代

3、有简明结论,方法/流程通用化(今后可快捷解决同类型问题)

数据分析方法与流程

结构化分析:事实+前提+逻辑=观点

1、事实的提炼:现实的抽象化(数据语言

2、逻辑的推进:金字塔原理,主次分明,总结概括

3、矩阵分析:陌生问题;分解式思考:定位与寻因

4、结论的表达:听众想听什么

数据分析的不同角色与职责

1、战略规划(理想):内外部数据相结合,长期规划的过程。注重方向判断,弱化细节预测

2、策略分解(落地):根据战略和目标,拆解为可以执行的层面。注重KPI设定

3、市场营销(场景):活动和获客驱动。注重成本核算、效果预测、事后评估

4、业务运营(场景):关注日常数据。注重监控预警和分析发现EDIT数字化模型

职业道德操守(告诉我们什么不应该做,什么应该做)

1、用户和机构利益置于个人利益之上,保护数据资产的安全性真实性、可靠性,禁止技术欺诈、数据造假、非法交易,损害用户和机构利益

2、不参与任何违法行为,包括但不限于:偷窃、欺骗、腐败、挪用或贿赂,不使用或滥用他人的产权,包括数据产品和知识产权,不参与诽谤和侮辱,不宽恕或帮助他人参与违法行为

专业行为准则(告诉我们怎样去做)

1、全面了解业务背景、痛点、需求,做出分析建议,与团队充分沟通,确定合理的业务指标,获取符合要求的源数据

2、保持工具和算法的前沿性、适用性、高效性。根据业务需要,选择合理的工具、平台、系统和算法

3、不断迭代并优化业务指标与数据模型

4、撰写专业可视化报告,逻辑清晰展示项目成果,并做出具有商业价值的建议

5、尊重契约,按时按质完整交付工作成果,并对相关数据、代码、结果进行保密

6、履行后期义务与责任,完整交付结果后,对客户须进行后期解答、咨询、维护等服务,对机构义务须进行后期跟进、优化、指导建议等工作

隐私与安全

1、隐私是一种个人的权力,即我的个人信息不被滥用,不被他人知道的 权力。

2、安全是一种机制,即为了确保隐私权得到保护而设立的一种机制。

3、首先明确个人权利,然后设置机制去保护权力

国外隐私法律相关要求

欧盟GDPR《通用数据保护条例》将个人数据保护深度嵌入组织运营,将抽象的保护理论转为实在的行为实践

1、企业收集用户信息前需说明:将收集用户的哪些信息、收集到的信息将如何进行存储、存储的信息会如何使用、企业的联系方式

2、用户享有的权利有:数据访问权(用户有权查看所用信息)被遗忘权(用户有权要求删除用户信息)限制处理权(用户有限制使用用户信息的权力)数据携带权(用户有权拿走属于自己的数据)

国内大数据法律发展

《刑法》:保护公民个人数据信息安全

《中华人民共和国网络安全法》

1、网络运营者收集、使用个人信息必须符合合法、正当、必要原则

2、网络运营者收集、使用公民信息的目的明确原则和知情同意原则

3、公民个人信息的删除权和更正权制度

《中华人民共和国数据安全法》初次审议

<think>嗯,用户想系统学习CDA Level1,我得先弄清楚CDA Level1是什么。记得CDA是Certified Data Analyst,也就是认证数据分析师。Level1应该是初级认证,适合刚入行的人。首先,我需要确认考试内容和要求,这样才能给出学习建议。 用户可能需要了解考试的结构,比如考试科目、题型、分值分布。然后,学习路径,应该分步骤来,比如基础知识、工具技能、实战练习。还要推荐一些学习资源,比如书籍、在线课程、题库。可能还需要备考策略,比如时间安排、重点复习内容。 另外,用户可能对CDA认证的价值和适合人群不太清楚,可能需要简要说明。比如,适合哪些职业方向的人,认证的好处是什么。这部分可以放在最后,帮助用户判断是否适合自己。 要注意用户是系统学习,所以步骤要详细,结构清晰。可能需要分几个大点,每个大点下有子项。例如,第一步了解考试大纲,第二步掌握基础知识,第三步学习工具,第四步实战,第五步模拟考试,最后备考策略。 需要确保提到的工具和知识点准确对应CDA Level1的要求。比如Excel、SQL、Python这些工具,统计学、数据预处理、分析方法这些知识点。还要注意考试中理论和实操的比例,可能各占50%。 可能还要提醒用户注意官方教材和社区交流的重要性,避免他们只依赖单一资源。同时,模拟题和真题练习很关键,毕竟通过练习可以熟悉考试形式。 最后,时间安排方面,建议3-6个月,每周投入足够的时间,保持持续性学习。这部分对在职学习者来说很重要,合理分配时间才能有效准备。 总之,要确保回答全面,覆盖考试内容、学习方法、资源推荐和备考技巧,结构清晰,步骤明确,帮助用户系统规划学习路径。</think>以下是为您整理的CDA Level1系统学习路径,共分6个步骤: 一、明确考试要求(约占总投入时间5%) 1. 考试结构 - 题型分布:选择题(单选+多选)占比80%,实操题占比20% - 考试时长:120分钟 - 及格标准:满分1000分,600分通过 2. 知识领域占比: $$ \begin{cases} \text{数据分析概念} & 8\% \\ \text{数据预处理} & 22\% \\ \text{统计分析} & 30\% \\ \text{建模分析} & 25\% \\ \text{可视化与报告} & 15\% \end{cases} $$ 二、基础能力构建(建议时长:40小时) 1. 数学基础 - 掌握概率基础:理解$P(A|B) = \frac{P(A \cap B)}{P(B)}$ - 统计核心概念: $$ \bar{X} = \frac{1}{n}\sum_{i=1}^{n}X_i $$ $$ s^2 = \frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X})^2 $$ 2. 数据库基础 - SQL重点语句: ```sql SELECT department, AVG(salary) AS avg_salary FROM employee GROUP BY department HAVING COUNT(*) > 5; ``` 三、工具技能精进(建议时长:60小时) 1. Excel高阶应用 - 掌握`VLOOKUP`、`INDEX(MATCH)`等函数组合 - 数据透视表高级分析: $$ \text{字段设置} = \text{行标签} + \text{值字段(平均值/求和)} $$ 2. Python基础 ```python # 使用pandas进行数据清洗 import pandas as pd df = pd.read_csv('data.csv') clean_df = df.dropna().query('age > 18') ``` 四、项目实战训练(建议时长:80小时) 1. 完整数据分析流程演练 $$ \text{数据获取} \rightarrow \text{清洗} \rightarrow \text{探索} \rightarrow \text{建模} \rightarrow \text{可视化} $$ 2. 典型分析场景: - 使用A/B测试验证转化率差异: $$ z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n_1}+\frac{1}{n_2})}} $$ 五、模拟考试强化(建议时长:30小时) 1. 重点突破领域: - 假设检验流程: $$ \text{建立假设} \rightarrow \text{选择检验方式} \rightarrow \text{计算p值} \rightarrow \text{做出决策} $$ 六、备考策略优化 1. 时间分配建议(3个月周期): $$ \begin{array}{|c|c|} \hline \text{阶段} & \text{时间占比} \\ \hline \text{基础巩固} & 30\% \\ \text{工具实操} & 40\% \\ \text{模拟训练} & 30\% \\ \hline \end{array} $$ 推荐学习资源: 1. 官方教材《CDA数据分析师认证考试指南》 2. 在线实验平台(如Kaggle、和鲸社区) 3. 官方题库(含300+真题解析) 特别提示:最新考试大纲显示,2023年起新增数据伦理相关考点,需特别关注GDPR等数据合规要求。建议每周保持15小时有效学习时间,重点模块采用「概念学习→工具实现→案例复现」的三段式训练法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值