openMVS深度图计算:DenseReconstruction Estimate之EVTEstimateDepthMap之深度图初始化(patchmatch)

本文介绍了在openMVS中如何从SFM得到的稀疏点初始化深度图。首先,从SFM数据获取稀疏点的深度、法向量和置信度信息。接着,通过两种方法在稀疏点间插值来构建深度图:一是以投影点为中心,使用邻域窗口进行深度值复制;二是采用三角网格划分进行插值。这两种方法都是为了从有限的稀疏数据中生成稠密的深度图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


我们在得到SFM线程传进来的稀疏点,要稠密重建,自然得对这些稀疏的三维点进行补全。也即我们需要根据稀疏点投影到当前帧的投影点的深度值去估计该投影点邻域像素点的深度值(在可用的稀疏点之间插值初始化深度图),从而得到更加准确的深度图。后续根据深度图去进行稠密重建。

1. 初始化SFM得到的稀疏点

/**
 * @brief depth计算,采用patchMatch方法 
        原理细节主要是参考论文"Accurate Multiple View 3D Reconstruction Using Patch-Based Stereo for Large-Scale Scenes", S. Shen, 2013
 *      代价计算分两种方式一种是上述论文里面的简单的直接使用NCC来作为匹配代价;
		另一种是带权重的代价参考论文"PatchMatch Stereo - Stereo Matching with Slanted Support Windows"公式3
 *		以NCC为评价标准,使用传播和随机优化来估计深度图

 *      给定同一场景的两个视图,我们将重建深度图的视图记为“参考图像”,将另一个视图记为“目标图像”。
 *      第一步:在可用的稀疏点之间插值初始化深度图;
 *      第二步:传播优化:深度图从顶部/左侧传播到底部/右侧,并在接下来的每个步骤中传递相反的方向。
        传播过程中,对于每个像素,如果邻域的NCC评分较好,首先将当前的深度估计替换为它的邻居深度值。
       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cashapxxx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值