
论文阅读笔记
文章平均质量分 86
coding_ksy
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
论文《Few-Shot Object Detection with Model Calibration》的解读
少样本目标检测(Few-Shot Object Detection, FSOD)旨在将已知类别的知识转移到未知类别,以检测新类别的目标。然而,以往的研究忽略了转移学习过程中固有的模型偏差问题。这种模型偏差导致了对训练类别的过拟合,并破坏了已学到的可转移知识。本文全面探讨了FSOD模型中的模型偏差问题,并提出了一种简单而有效的方法,通过在三个层次上进行模型校准来解决模型偏差问题:1)骨干网络校准,以保留已学到的先验知识并缓解对基本类别的模型偏差;2)区域建议网络(RPN)校准,以识别新类别的未标记目标;原创 2024-07-30 21:09:13 · 1441 阅读 · 0 评论 -
《基于深度学习的目标检测算法综述论文的解读》
在 2015 年,Ren S Q 团队[19] 在之前的基础上提出了Faster R-CNN 算法,该算法在简单网络的目标检测速度达到 17 fps,在PASCAL VOC 上准确率为 59.9 %,而复杂网络下达到 5 fps,准确率 78.8 %。SSD 通过对 Faster R-CNN 算法和 YOLO 算法的优点结合,利用特征的金字塔结构充分挖掘卷积层的特征信息,使得其在满足检测精度的同时保证了算法的速度,在一定程度上克服了 YOLO 算法难以检测小目标、定位不准的缺点。此外两者的输出也有所不同。原创 2024-07-29 21:13:42 · 1286 阅读 · 0 评论 -
A White Paper on Neural Network Quantization
这篇文章《神经网络量化白皮书》主要讨论了神经网络量化在提高现代网络计算效率方面的重要作用,特别是对于具有严格功耗和计算限制的边缘设备。文章深入讨论了如何在保持低比特权重和激活的同时,减轻量化噪声对性能的影响的方法。首先,文章从硬件角度介绍了量化的基本概念,然后分别讨论了两种主要的量化方法:训练后量化(Post-Training Quantization, PTQ)和量化感知训练(Quantization-Aware Training, QAT)。PTQ方法无需重新训练或标记数据,是一种轻量级的量化方法。原创 2024-03-11 20:07:18 · 1163 阅读 · 0 评论 -
BEVFormer v2: Adapting Modern Image Backbones to Bird’s-Eye-View Recognition via Perspective Supervi
我们提出了一种新颖的鸟瞰(BEV)检测器,采用透视监督,能够更快地收敛,并更适合现代图像骨干网络。现有的领先鸟瞰检测器通常与特定的深度预训练骨干网络(如VoVNet)相关联,这限制了繁荣的图像骨干网络与鸟瞰检测器之间的协同效应。为了解决这一限制,我们优先考虑通过引入透视视图监督来简化鸟瞰检测器的优化。为此,我们提出了一个两阶段的鸟瞰检测器,其中来自透视头的候选框被馈送到鸟瞰头进行最终预测。为了评估我们模型的有效性,我们进行了大量的消融研究,重点关注监督形式和所提出的检测器的普遍性。原创 2024-03-01 11:07:13 · 1670 阅读 · 0 评论 -
读论文的技巧
第二遍阅读完之后,你就对整个论文的各个部分,都有一个大概的了解,中间可以把作者引用的别人的相关文献圈出来,比如作者是在某某某的方法上进行了改进,做了哪些改进之类的。确定论文值得读之后,可以快速的把整个论文过一遍,不需要知道所有的细节,需要了解重要的图和表,知道每一个部分在干什么,圈出相关文献。读实验部分的时候,可以思考一下,作者是如何描述自己的实验的,你可以思考,如果换自己来做的话,能不能比作者做得更好?第三遍是最后一遍了,也是最详细的一遍,这里就需要自己知道每一句话在干什么,每一段在说什么。原创 2024-02-15 20:43:31 · 510 阅读 · 0 评论 -
精读Relational Embedding for Few-Shot Classification (ICCV 2021)
提出了用于少样本分类的自相关表示方法,从图像内部提取可迁移的结构模式。提出了用于少样本分类的交叉相关注意力模块,通过卷积滤波学习图像之间的可靠共注意力。在四个标准基准数据集上的实验显示,本文方法达到了最先进的水平,且通过消融研究验证了组件的有效性。这一部分为读者提供了该研究背景的深入理解,展示了其相对于现有工作的创新点和优势,特别是在处理自相关和交叉相关以提高少样本分类性能方面的新颖贡献。原创 2024-02-14 20:05:41 · 1138 阅读 · 0 评论 -
关于少样本学习、零样本学习、单样本学习中的support set和query set的概念解析
梳理一下关于少样本学习(如few-shot learning)、零样本学习(zero-shot learning)、单样本学习(one-shot learning)中的support set和query set的概念,以及为何测试集中会涉及到“unseen”(未见过)的新类。原创 2024-02-13 18:24:25 · 2226 阅读 · 0 评论