【CF】Day4——Codeforces Round 1009 (Div. 3) C + Codeforces Round 1008 (Div. 2) D

补一下,忘写了(

D. Scammy Game Ad

题目:

思路:

这道题其实是一道贪心的题目,我们先来分析一下几种情况

①. +x | +x

对于都是相加的情况,其实我们无论要不要调换轨道都是一样的

②.*x | *x

对于乘以相同的数字,其实我们无论要不要调换轨道也都是一样的

③.*x | +y

对于一个乘,一个加的选择,我们肯定是要乘的门上多走点人,这样才能利益最大化,因为加门无论多少人都是加x人,所以只要有一人即可

④.*x | *(x+1)

对于乘以不同的数字,我们肯定要更多人往乘以多的门上走,这样才能利益最大化

单独情况我们分析完毕,那我们结合整体情况分析

首先,如果我们遇到一个门,我们是没法在门前进行分配的,因为每次分配只能在通过门之后分配,所以我们直接往后考虑

假设对于第一个门,我们无法通过分配最大化利益,那我们只能从他后面的门考虑,从上诉情况中我们可以直到,只有当情况③和④时进行分配才是最好的

所以我们向后枚举,如果遇到*x | +y的情况,那我们当前分配就要往乘上,如果遇到*x | *(x+1)情况,那我们就往乘的数大的门上走

代码:

#include <iostream>
#include <algorithm>
#include<cstring>
#include<cctype>
#include<string>
#include <set>
#include <vector>
#include <cmath>
#include <queue>
#include <unordered_set>
#include <map>
#include <unordered_map>
#include <stack>
#include <memory>
using namespace std;
#define ll long long
#define yes cout << "YES" << endl
#define no cout << "NO" << endl

char cL[35],cR[35];
int nL[35], nR[35];

void solve()
{
    int n;
    cin >> n;
    for (int i = 0; i < n; i++)
    {
        cin >> cL[i] >> nL[i] >> cR[i] >> nR[i];
    }
    ll l = 1, r = 1;
    for (int i = 0; i < n; i++)
    {
        ll add = 0;
        bool goleft = true;
        for (int j = i+1; j < n; j++)
        {
            if (cL[j] != cR[j])
            {
                if (cR[j] == 'x')
                    goleft = false;
                break;
            }
            else if (cL[j] == 'x' && nL[j] != nR[j])
            {
                if (nR[j] == 3)
                    goleft = false;
                break;

            }
        }
        if (cL[i] == '+')
            add += nL[i];
        else
            add += l * (nL[i] - 1);
        if (cR[i] == '+')
            add += nR[i];
        else
            add += r * (nR[i] - 1);
        if (goleft)
            l += add;
        else
            r += add;
    }
    cout << l + r << endl;
}

int main()
{
//    cin.tie(0)->sync_with_stdio(false);
    int t = 1;
    cin >> t;
    while (t--)
    {
        solve();
    }
    return 0;
}

C. XOR and Triangle

题目:

思路:

题目要求我们找出一个y,使得x,y,x^y能构成一个三角形,那么显然我们只需要考虑两小边是否大于第三边就行了,同时y是小于x的,所以y一定不是最大边,那么我们就考虑两种情况(设x^y=z)

①.x是最大边

假设有:

x:11100010

那么先不考虑最高位要不要取1,我们就假设是0,这样方便我们后面讨论,防止y会大于x

所以y应该是这样的0......

那么假如我们遇到了1,那么我们就考虑要选什么,如果我们选了0,那么z就是1,如果选了1,那么z就是0,可以看到无论选什么,y+z都是等于x的,所以无影响

那么假如我们遇到了0,这是就要选1了,为什么?因为如果我们选0,那么z也是0,最后相加还是0,这显然不利于我们y+z>x,所以肯定要选1,这样z也是1了

②.x^y是最大边

同上思考,但是这里遇到1和遇到0就反过来了,这里是遇到1要选1,遇到0无所谓

那我们结合两种情况,由于我们每次都不知道到底谁是最大边,那我们肯定要尽量都往好的上选,所以我们对于y,无论x位置上是啥,我们都选1就行了,特别的,首位不能选1,必须选0

那么回到y最高位要不要选0,其实如果y选了1,那么就相当于y=x^z了,因为这时z的首位是0,而y和z其实是一个因果关系,因此相当于反过来考虑了

所以对于y,我们可以考虑构造一个01111...的数字,这样无论是x是最大边还是z是最大边我们都能满足,如果此时都不能满足,说明肯定没有解了

(以上为个人的见解)

代码:

#include <iostream>
#include <algorithm>
#include<cstring>
#include<cctype>
#include<string>
#include <set>
#include <vector>
#include <cmath>
#include <queue>
#include <unordered_set>
#include <map>
#include <unordered_map>
#include <stack>
#include <memory>
using namespace std;
#define ll long long
#define yes cout << "YES" << endl
#define no cout << "NO" << endl

void solve()
{
    int x;
    cin >> x;
    int w = 0;
    for (int i = 31; i >= 0; i--)
    {
        if ((x >> i) & 1)
        {
            w = i;
            break;
        }
    }
    int y = (1 << w) - 1;
    int z = x ^ y;
    if (y < x && x+y > z && x+z > y && y+z > x)
    {
        cout << y << endl;
        return;
    }
    cout << -1 << endl;
}

int main()
{
//    cin.tie(0)->sync_with_stdio(false);
    int t = 1;
    cin >> t;
    while (t--)
    {
        solve();
    }
    return 0;
}

### Codeforces Round 927 Div. 3 比赛详情 Codeforces是一个面向全球程序员的比赛平台,定期举办不同级别的编程竞赛。Div. 3系列比赛专为评级较低的选手设计,旨在提供更简单的问题让新手能够参与并提升技能[^1]。 #### 参赛规则概述 这类赛事通常允许单人参加,在规定时间内解决尽可能多的问题来获得分数。评分机制基于解决问题的速度以及提交答案的成功率。比赛中可能会有预测试案例用于即时反馈,而最终得分取决于系统测试的结果。此外,还存在反作弊措施以确保公平竞争环境。 ### 题目解析:Moving Platforms (G) 在这道题中,给定一系列移动平台的位置和速度向量,询问某时刻这些平台是否会形成一条连续路径使得可以从最左端到达最右端。此问题涉及到几何学中的线段交集判断和平面直角坐标系内的相对运动分析。 为了处理这个问题,可以采用如下方法: - **输入数据结构化**:读取所有平台的数据,并将其存储在一个合适的数据结构里以便后续操作。 - **时间轴离散化**:考虑到浮点数精度误差可能导致计算错误,应该把整个过程划分成若干个小的时间间隔来进行模拟仿真。 - **碰撞检测算法实现**:编写函数用来判定任意两个矩形之间是否存在重叠区域;当发现新的连接关系时更新可达性矩阵。 - **连通分量查找技术应用**:利用图论知识快速求解当前状态下哪些节点属于同一个集合内——即能否通过其他成员间接相连。 最后输出结果前记得考虑边界条件! ```cpp // 假设已经定义好了必要的类和辅助功能... bool canReachEnd(vector<Platform>& platforms, double endTime){ // 初始化工作... for(double currentTime = startTime; currentTime <= endTime ;currentTime += deltaT){ updatePositions(platforms, currentTime); buildAdjacencyMatrix(platforms); if(isConnected(startNode,endNode)){ return true; } } return false; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值