双指针算法

目录

双指针算法

最长连续不重复子序列

数组元素的目标和


双指针算法

常见的两种样式:

  • 双指针指向两个不同的区间

  • 双指针指向一个区间的左右两端,这种方式更加常见

双指针算法思想

for(int i=0;i<n;i++)
	for(int j=0;j<n;j++)
		O(n^2) 时间复杂度

我们要把这个思想优化,一般利用一些单调性的方式

需求 asd qwe zxc 去掉空格,每个字符串单独一行
要求输出:
asd
qwe
zxc

#include<iostream>
#include<string.h>

using namespace std;

int main()
{
	char str[100];
	gets(str);
	int n = strlen(str);
	
	for(int i=0;i<n;i++)
	{
		int j=i;
		while(j<n && str[i]!=" ") j++;
		
		for(int k=i;k<j;k++) cout<<str[k];
		cout<<endl;
		//令i直接移到j的位置,利用的是发现题目中单调性来优化,降低时间复杂度
		i=j;
	}
	return 0;
}

双指针算法模板

for(int i=0,j=0;i<n;i++)                  
{
	while(j<i && check(i,j)) j++;
	//每道题目的具遗体逻辑
}

for循环遍历i,while依据题意定下j停下的位置,之后题目的具体代码,之后利用i,j之间关系进行优化

最长连续不重复子序列

解题代码

#include <iostream>

using namespace std;

const int N = 100010;

int n;
int q[N], s[N];

int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ ) scanf("%d", &q[i]);

    int res = 0;
    for (int i = 0, j = 0; i < n; i ++ )
    {
        s[q[i]] ++ ;
        while (j < i && s[q[i]] > 1) s[q[j ++ ]] -- ;
        res = max(res, i - j + 1);
    }

    cout << res << endl;

    return 0;
}

数组元素的目标和

解题代码

#include <iostream>

using namespace std;

const int N = 1e5 + 10;

int n, m, x;
int a[N], b[N];

int main()
{
    scanf("%d%d%d", &n, &m, &x);
    for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);
    for (int i = 0; i < m; i ++ ) scanf("%d", &b[i]);

    for (int i = 0, j = m - 1; i < n; i ++ )
    {
        while (j >= 0 && a[i] + b[j] > x) j -- ;
        if (j >= 0 && a[i] + b[j] == x) cout << i << ' ' << j << endl;
    }

    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

渐次登高

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值