小铃铛从第一期熬到第二期,出走半生归来仍是小白
本期的体验内容是支付宝百宝箱专业版:百宝箱
在这篇官方文档里讲述了如何使用:Datawhale-学用 AI,从此开始
(PS:不得不说,我认为在对话应用的模型这里,比MAAS平台更换模型更方便一点,MAAS需要重新创建一个微调模型,再与一个应用捆绑)
切入正题,本次分享的内容是prompt工程的构建
Prompt工程参考流程
-
首先需要“明确目标”,
知道想要让Agent做什么,对Agent的输入输出大致有个预期。
最好是有一些我们想实现的效果的案例,当然也不要太大压力,有个大致方向和审美即可
-
接着我们需要分析要素。
思考Agent需要获取什么信息,才能实现我们的目标。
大模型虽然能力很强,需要我们做好铺垫和指引,才能让他们正确做事,完成我们的目标。
举例:当你准备煮饺子,需要一个勺子,你决定让Agent去买;没把背景介绍清楚的话,很可能他给你带回来一个塑料小勺子还告诉你这个勺子便宜省了多少钱……
-
完成要素分析就可以开始 撰写Prompt ,
大家可以从选择良好的框架开始下手,通过框架进行拆解、快速写作,
我们给大家准备好了工具包~ 给大家推荐了觉得很好用的框架、以及一些其他小技巧~
-
写好了一版Prompt后,我们需要测试效果,
测试效果的主要原因是要想实现我们的预期目标,一次做对基本上不太可能,就需要反复验证和迭代。
这也是为什么Prompt后面往往会加“工程”两个字的原因,我们需要不断分析边界和目标是否达成。
如果对Agent输出不满意:你需要思考告诉Agent的内容是不是不够详实。
回过头来分析造成Agent回复不满足需求的原因,是遗漏或是表述不清、还是上下文矛盾。
找到问题点重新修改Prompt,直到满意为止~
经过反复尝试你一定会得到一个听话又好用的Agent!
PS:另外,这个动作你也可以和AI一起来做~
(以上内容来自Datawhale文档)
更多内容详见:Datawhale-学用 AI,从此开始
基于上述文章的扩展
在上述文章中,提到了现代主流的Prompt框架,以下让我来一一介绍和体验
PS:搜索过程中发现了这样一个网站,供大家学习:提示工程指南 | Prompt Engineering Guide
1.APE
APE 框架提倡将用户的请求分解为三个主要部分:行动、目的和期望。这种分解方法使得与大模型的交互更加明确和高效。
行动 (Action):定义需要完成的特定任务、行动或活动。这是框架的第一步,旨在明确要执行的具体任务或活动。
目的 (Purpose):讨论意图或目标。这部分是为了解释为什么要执行这个特定的任务或活动,它的背后意图是什么,以及它将如何支持更大的目标或目标。
期望 (Expectation):陈述期望的结果。在这最后一步,明确表述通过执行特定任务或活动期望实现的具体结果或目标。
例: 假设你是一家产品销售公司的营销经理,你想通过社交媒体广告来提高产品的在线销售。按照 APE(行动,目的,期望)框架,你可以创建以下提示词: 1.行动 (Action):计并发布一系列的社交媒体广告,宣传我们的最新产品。 2.目的 (Purpose):通过吸引社交媒体用户的注意,提高产品的在线销售和品牌知名度。 3.期望 (Expectation):在接下来的一个月中,通过社交媒体广告,在线销售增加 30%,并且我们的品牌在社交媒体上的关注度提高 20%。
通过这个 APE 提示词,团队能够清晰地理解要执行的行动、达成的目的以及期望实现的具体结果,从而能够更有效地执行广告活动。
2.BROKE
● 背景 (Background): 提供足够的信息来说明对话的背景,帮助聊天机器人理解对话的上下文。
●&