文章目录
最短路径
前文提到,对于不带权图来说,BFS可以解决最短路径问题,因为它是类似于树的层次遍历那样,同一个结点的后继的访问顺序相邻,这使得BFS首次访问结点时的路径必然是最短的。
但是对于带权图来说,BFS就无法解决了最短路径问题了,除非图中各边的权值相等。所以我们需要用一些其他的算法来解决带权图的最短路径问题。
最短路径问题大致上可以分为两类:一种是单源最短路径,即求图中某一点到其他任意一点的最短路径。另一种是求每对顶点之间的最短路径。
经典的求带权图的单源最短路径的算法有Dijkstra(迪杰斯特拉)算法,求每对顶点间的最短路径的算法有Floyd(弗洛伊德)算法。
Dijkstra和Floyd也能够解决不带权图中的最短路径问题,因为不带权图可以视为每一条边的权值都相同的带权图。
Dijkstra算法
Dijkstra基于贪心算法,它的核心是找出当前集合中顶点可达的,与源点最近的顶点,把它与源点之间的路径视为源点到该点的最短路径,并把它加入到集合中。
例如:
假设我们找从1到其他各个顶点的最短路径,那么按照Dijkstra算法:
初始顶点集 S = { 1 } S=\{1\} S={ 1}
顶点 | 第一轮 | 第二轮 | 第三轮 | 第四轮 | … |
---|---|---|---|---|---|
2 | 1->2=5 | … | |||
3 | 1->3=6 | 1->3=6 | … | ||
4 | 1->2->4=7 | 1->2->4=7 | … | ||
5 | 1->2->5=17 | 1->2->5=17 | 1->2->4->5=15 | … | |
6 | 1->3->6=9 | 1->3->6=9 | … | ||
7 | 1->2->4->7=11 | … | |||
8 | … | ||||
S | {1,2} | {1,2,3} | {1,2,3,4} | … | |
最短路径 | 1->2=5 | 1->3=6 | 1->2->4=7 | 1->3->6=9 | … |
第一轮,集合S中的顶点可达的顶点有2、3。但1->2的距离最短,所以 1->2 的最短路径 = 5, 把2加入到S中,此时 S = { 1 , 2 } S=\{1,2\} S={ 1,2}。
第二轮,集合S中的顶点可达的顶点有3、4、5。但1->3的距离最短,所以1->3的最短路径 = 6,把3加入到S中,此时 S = { 1 , 2 , 3 } S=\{1,2,3\} S={ 1,2,3}。
第三轮,集合S中的顶点可达的顶点有4、5、6。但1-2->4的路径最短,所以1->4的最短路径 = 7,把4加入到S中,此时 S = { 1 , 2 , 3 , 4 } S=\{1,2,3,4\} S={ 1,2,3,4}。
第四轮,集合S中的顶点可达的顶点有5、6、7。但1->3->6的路径是最短的,所以1->6的最短路径 = 9,把6加入到S中,此时 S = { 1 , 2 , 3 , 4 , 6 } S=\{1,2,3,4,6\} S={ 1,2,3,4,6}。
后面依次类推,直到所有的顶点都被包括在S中。