SWUST OJ#1068 图的按录入顺序深度优先搜索

本文解析了深度优先搜索在图论中的应用,探讨了如何处理含有孤立节点的图,通过调整终止条件并优化搜索过程,确保遍历所有可达节点。代码示例展示了如何在遇到孤立节点时进行正确遍历。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

题目

思路

代码


题目

题目描述

图的深度优先搜索类似于树的先根遍历,即从某个结点开始,先访问该结点,然后深度访问该结点的第一棵子树,依次为第二顶子树。如此进行下去,直到所有的结点都访问为止。在该题中,假定所有的结点以“A”至“Z”中的若干字符表示,且要求结点的访问顺序根据录入的顺序进行访问。如果结点录入的顺序为HUEAK,从H开始进行深度优先搜索,则可能的搜索结果为:H->A->K->U>E.

输入

第一行为一个整数n,表示顶点的个数,第二行为n个大写字母构成的字符串,表示顶点,接下来是为一个n*n大小的整数矩阵,表示图的邻接关系。数字为0表示不邻接,否则为相应的边的长度。最后一行为一个字符,表示要求进行深度优先搜索的起始顶点。

输出

用一行输出深度优先搜索结果,起始点为给定的顶点。

样例输入

5
HUEAK
0 0 2 3 0
0 0 0 7 4
2 0 0 0 0
3 7 0 0 1
0 4 0 1 0
H

样例输出

HEAUK

思路

我们套用图的深搜的模板

图深搜介绍

vector<int>G[N];
bool vis[N];
void Backtrack(int key) {
    if(终止条件) {//根据题目要求,寻找终止条件
        xxxx;
        return;
    }
    for(int i=0;i<G[key].size();i++) {
        //当该点没被搜过
        if(!vis[G[key][i]]) {
            vis[G[key][i]]=1;//做记录
            Backtrack(G[key][i]);//搜索下个节点
            vis[G[key][i]]=0;//搜完销毁记录
        }
    }
}
int main() {
    前置代码;

    vis[key]=1;
    Backtrack(key);

    return 0;
}

可以发现本题的终止条件,就是所有节点全部搜完即截至。所以,我们不妨打一个队列,用来储存答案结果(注意本题应该是char)。

因此,本题将模板套用下来就是这样

int n;
string s;
queue<char>ans;
vector<int>G[N];
bool vis[N];
void Print() {
    while(!ans.empty()) {
        cout<<ans.front();
        ans.pop();
    }
}
void Backtrack(int key) {
    if(ans.size()==n) {
        Print();
        return;
    }
    for(int i=0;i<G[key].size();i++) {
        if(!vis[G[key][i]]) {
            ans.push(s[G[key][i]]);
            vis[G[key][i]]=1;
            Backtrack(G[key][i]);
            //vis[G[key][i]]=0;
            //ans.pop();
            //注:由于题目是输出深搜的节点顺序,而不是输出路径,所以本题不用销毁记录
        }
    }
}
int main() {
    前置代码
    
    ans.push(s[key]);
    vis[key]=1;
    Backtrack(key);

    return 0;
}

然后我交上去,愉快的WA掉 

于是,打了几组随机数来看看。

果然,遇到这种情况:

节点12345
100110
200001
310010
410100
501000

就没有输出了!

将图大致画了下来,发现是这种情况。

 也就是说存在有孤立节点,他们之间无法进行互通遍历。那么由此,终止条件就不是全部搜完了。

那我们如何判断它所有能搜的点都搜完了呢?

答案很简单,就是等它for循环自己跑完就行,不用再额外加终止条件。

void Backtrack(int key) {
    for(int i=0;i<G[key].size();i++) {
        if(!vis[G[key][i]]) {
            ans.push(s[G[key][i]]);
            vis[G[key][i]]=1;
            Backtrack(G[key][i]);
        }
        
    }
}

代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <vector>
#include <queue>
#define endl '\n'
#define N 10005
typedef long long ll;
using namespace std;
int n,flag=1;
string s;
queue<char>ans;
vector<int>G[N];
bool vis[N];
void Backtrack(int key) {
    for(int i=0;i<G[key].size();i++) {
        if(!vis[G[key][i]]) {
            ans.push(s[G[key][i]]);
            vis[G[key][i]]=1;
            Backtrack(G[key][i]);
        }
        
    }
}
int main() {
    cin>>n>>s;
    for(int i=0;i<n;i++) {
        for(int j=0;j<n;j++) {
            int x;cin>>x;
            if(x) G[i].push_back(j);
        }
    }
    char c;cin>>c;
    int key=-1;
    while(c!=s[++key]);
    ans.push(s[key]);
    vis[key]=1;
    Backtrack(key);
    while(!ans.empty()) {
        cout<<ans.front();
        ans.pop();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青衿白首志

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值