目录
题目
题目描述
图的深度优先搜索类似于树的先根遍历,即从某个结点开始,先访问该结点,然后深度访问该结点的第一棵子树,依次为第二顶子树。如此进行下去,直到所有的结点都访问为止。在该题中,假定所有的结点以“A”至“Z”中的若干字符表示,且要求结点的访问顺序根据录入的顺序进行访问。如果结点录入的顺序为HUEAK,从H开始进行深度优先搜索,则可能的搜索结果为:H->A->K->U>E.
输入
第一行为一个整数n,表示顶点的个数,第二行为n个大写字母构成的字符串,表示顶点,接下来是为一个n*n大小的整数矩阵,表示图的邻接关系。数字为0表示不邻接,否则为相应的边的长度。最后一行为一个字符,表示要求进行深度优先搜索的起始顶点。
输出
用一行输出深度优先搜索结果,起始点为给定的顶点。
样例输入
5 HUEAK 0 0 2 3 0 0 0 0 7 4 2 0 0 0 0 3 7 0 0 1 0 4 0 1 0 H样例输出
HEAUK
思路
我们套用图的深搜的模板
vector<int>G[N];
bool vis[N];
void Backtrack(int key) {
if(终止条件) {//根据题目要求,寻找终止条件
xxxx;
return;
}
for(int i=0;i<G[key].size();i++) {
//当该点没被搜过
if(!vis[G[key][i]]) {
vis[G[key][i]]=1;//做记录
Backtrack(G[key][i]);//搜索下个节点
vis[G[key][i]]=0;//搜完销毁记录
}
}
}
int main() {
前置代码;
vis[key]=1;
Backtrack(key);
return 0;
}
可以发现本题的终止条件,就是所有节点全部搜完即截至。所以,我们不妨打一个队列,用来储存答案结果(注意本题应该是char)。
因此,本题将模板套用下来就是这样
int n;
string s;
queue<char>ans;
vector<int>G[N];
bool vis[N];
void Print() {
while(!ans.empty()) {
cout<<ans.front();
ans.pop();
}
}
void Backtrack(int key) {
if(ans.size()==n) {
Print();
return;
}
for(int i=0;i<G[key].size();i++) {
if(!vis[G[key][i]]) {
ans.push(s[G[key][i]]);
vis[G[key][i]]=1;
Backtrack(G[key][i]);
//vis[G[key][i]]=0;
//ans.pop();
//注:由于题目是输出深搜的节点顺序,而不是输出路径,所以本题不用销毁记录
}
}
}
int main() {
前置代码
ans.push(s[key]);
vis[key]=1;
Backtrack(key);
return 0;
}
然后我交上去,愉快的WA掉
于是,打了几组随机数来看看。
果然,遇到这种情况:
节点 | 1 | 2 | 3 | 4 | 5 |
1 | 0 | 0 | 1 | 1 | 0 |
2 | 0 | 0 | 0 | 0 | 1 |
3 | 1 | 0 | 0 | 1 | 0 |
4 | 1 | 0 | 1 | 0 | 0 |
5 | 0 | 1 | 0 | 0 | 0 |
就没有输出了!
将图大致画了下来,发现是这种情况。
也就是说存在有孤立节点,他们之间无法进行互通遍历。那么由此,终止条件就不是全部搜完了。
那我们如何判断它所有能搜的点都搜完了呢?
答案很简单,就是等它for循环自己跑完就行,不用再额外加终止条件。
void Backtrack(int key) {
for(int i=0;i<G[key].size();i++) {
if(!vis[G[key][i]]) {
ans.push(s[G[key][i]]);
vis[G[key][i]]=1;
Backtrack(G[key][i]);
}
}
}
代码
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <vector>
#include <queue>
#define endl '\n'
#define N 10005
typedef long long ll;
using namespace std;
int n,flag=1;
string s;
queue<char>ans;
vector<int>G[N];
bool vis[N];
void Backtrack(int key) {
for(int i=0;i<G[key].size();i++) {
if(!vis[G[key][i]]) {
ans.push(s[G[key][i]]);
vis[G[key][i]]=1;
Backtrack(G[key][i]);
}
}
}
int main() {
cin>>n>>s;
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
int x;cin>>x;
if(x) G[i].push_back(j);
}
}
char c;cin>>c;
int key=-1;
while(c!=s[++key]);
ans.push(s[key]);
vis[key]=1;
Backtrack(key);
while(!ans.empty()) {
cout<<ans.front();
ans.pop();
}
return 0;
}