
深度学习【环境搭建】
文章平均质量分 95
环境搭建
一叶千舟
专注AI大模型智能应用分享,掌控智能时代创新密钥
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Pytorch安装教程】深度学习框架
本文详细介绍了在Windows系统下通过Anaconda安装PyTorch(GPU版)的完整流程。主要包括三个步骤:首先检查显卡型号和驱动版本(要求CUDA版本≤驱动版本),然后创建conda虚拟环境,最后提供两种安装方法(官网命令行安装和本地镜像离线安装)。安装完成后可通过torch.cuda.is_available()命令验证GPU是否可用。文中特别强调CUDA版本需与驱动版本匹配,并推荐使用清华镜像源进行离线安装。该教程适用于具备Anaconda、CUDA和cuDNN基础环境的用户。原创 2025-06-22 00:00:21 · 746 阅读 · 0 评论 -
【Anconda安装教程】安装到环境配置全流程
本文详细介绍了Anaconda的下载安装与环境配置流程。首先对比了Anaconda与Miniconda的区别,指导用户选择合适的版本。安装步骤包括官网下载(推荐清华镜像)、管理员身份运行安装程序、自定义安装路径以及配置四个关键环境变量。安装完成后可通过conda --version命令验证。针对Python环境管理,重点讲解了虚拟环境的创建(conda create)、激活(conda activate)、退出(conda deactivate)等核心操作,并原创 2025-06-21 20:28:56 · 4867 阅读 · 0 评论 -
【CUDA&cuDNN安装】深度学习基础环境搭建
本文详细介绍了Windows系统下CUDA和cuDNN的安装配置流程。主要内容包括:1. 检查显卡型号与CUDA版本匹配性,解决驱动问题的方法;2. 分步骤指导CUDA 11.8的下载、安装和环境变量配置;3. 讲解cuDNN的下载安装和验证方法;4. 深入解析CUDA和cuDNN的功能区别:CUDA是通用GPU计算工具包,而cuDNN是专为深度学习优化的加速库。文章特别强调版本匹配的重要性,并提供了常见问题的解决方案,适合需要在Windows平台搭建深度学习环境的开发者参考。原创 2025-06-21 16:25:33 · 1771 阅读 · 0 评论