卷积神经网络-1

卷积计算:

卷积是两个变量在某范围内相乘后求和的结果。如果卷积的变量是序列x(n)h(n),则卷积的结果y(n)=\sum x(i)h(n-i)=x(n)*h(n)

其中星号*表示卷积。当时序n=0时,序列h(-i)h(i)的时序i取反的结果;时序取反使得h(i)

以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。另外,n是使

h(-i)位移的量,不同的n对应不同的卷积结果。

如果卷积的变量是函数x(t)h(t),则卷积的计算变为 y(t)=\int x(p)h(t-p)dp=x(t)*h(t)

其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表示卷积。 

卷积网络

是指那些至少在网络的一层中使用卷积运算来替代一般的矩阵乘法运算的神经网络。

来处理具有类似网络结构的数据,‌类似网络结构的数据主要包括时间序列数据图像数据‌。

时间序列数据可以认为是在时间轴上有规律地采样形成的一维网格,例如股票价格、气温变化等。这种数据的特点是随着时间的推移而变化,具有时间上的连续性和相关性。而图像数据则可以看作是二维的像素网格,每个像素代表图像中的一个点。图像数据具有空间上的连续性和局部相关性,

卷积神经网络结构

一般由输入层(Input)、卷积层(Convolution)、池化层(Pooling)、全连接层(Fully Connected)组成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值