假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/climbing-stairs
著作权归领扣
int climbStairs(int n)
{
if (n < 3)
{
return n;
}
int a = 1;
int b = 1;
int c ;
int i;
for (i = 2; i <= n; i++)
{
c = a + b;
a = b;
b= c;
}
return c;
}
这个方法为滚动数组的方法
这个题的解题思路,想到的话,还是很简单的,
只有一个台阶。是有一种方法,2个有2种方法,3个有3种,4个有5种,所以可得当有n个台阶时,是前两种台阶的方法相加。
滚动数组就是,当n为3时,c为a加b为2,将b给a,将第二个台阶的方法给b,然后再次循环,i为3,c为第一和第二个方法相加为3,下一个循环就将第二个台阶的方法给a,第三个台阶的方法给b,就这样一直滚动,这就是用滚动的大致思路。
int climbStairs(int n)
{
int dp[n+2];
dp[0] = 1;
dp[1] = 1;
int i;
for(i =2; i <= n; i++)
{
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
这是动态规划方法,大体思路差不多,d【3】=d【2】+d【1】,d【4】=d【3】+d【2】,运用循环来达到求台阶。
int climbStairs(int n)
{
int a= 1;
int b = 2;
int sum;
if( n <= 2)
{
return n;
}
int i;
for(i = 3; i <= n ;i++ )
{
sum= a + b;
a=b;
b =sum;
}
return sum;
}
迭代法是一种不断用变量的旧值递推新值的过程,
大致思路和上面差不多,当i=3时,sum=a+b,然后令再次给a,b附给第二台阶和第三台阶的值,以便下次循环可以得到第四个台阶的方法。