自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 问答 (1)
  • 收藏
  • 关注

原创 统计学习方法(李航) 第六章(2) 最大熵模型(一)

笔记目录:统计学习方法(李航) 第一章 绪论统计学习方法(李航)第二章 感知机统计学习方法(李航)第三章 k近邻统计学习方法(李航) 第四章 贝叶斯统计学习方法(李航) 第五章 决策树我们先从基础概念“熵”开始。在信息论中,熵(Entropy)是衡量一个随机变量不确定性的度量。对于一个离散随机变量 XXX,其可能取值为 {x1,x2,...,xk}\{x_1, x_2, ..., x_k\}{x1​,x2​,...,xk​},对应的概率分布为 P(X=xi)=piP(X=x_i) = p_iP(

2025-05-03 21:08:21 985

原创 统计学习方法(李航) 第六章(2) 最大熵模型(二)

本节我们详细探讨了最大熵原理及其在建模条件概率分布PY∣XP(Y|X)PY∣X中的应用——最大熵模型在满足已知约束(特征期望匹配经验期望)的前提下,选择熵最大的模型度量不确定性。均匀分布熵最大(无约束),正态分布熵最大(给定均值方差)推导得出Pwy∣x1Zwxexp⁡∑i1nwifixyPw​y∣xZw​x1​exp∑i1n​wi​fi​xy,其中ZwxZ_w(x)Zw​x。

2025-05-03 21:08:05 563

原创 统计学习方法(李航) 第六章(1) 逻辑回归

核心假设: 给定特征XX1XpXX1​Xp​,我们想建模的是Y1Y=1Y1的条件概率πXPY1∣XπXPY1∣X。逻辑回归假设这个概率可以通过 Sigmoid 函数作用于XXX的线性组合β0β1X1⋯βpXpβ0​β1​X1​⋯βp​Xp​πXPY1∣X11e−β0β1X1⋯βpXpeβ0β1X1⋯βpXp1eβ0β。

2025-05-03 21:03:49 727

原创 统计学习方法(李航) 第五章 决策树

笔记目录:统计学习方法(李航) 第一章 绪论统计学习方法(李航)第二章 感知机统计学习方法(李航)第三章 k近邻统计学习方法(李航) 第四章 贝叶斯统计学习方法(李航) 第五章 决策树决策树是一种树形结构的分类或回归模型,通过一系列 if-then 规则对数据进行决策示例:对于数据集 {(x1,y1),(x2,y2),…,(xn,yn)}\{ (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \}{(x1​,y1​),(x2​,y2​),…,(xn​,yn​)}

2025-04-30 21:49:09 1263

原创 统计学习方法(李航) 第四章 贝叶斯

笔记目录:统计学习方法(李航) 第一章 绪论统计学习方法(李航)第二章 感知机统计学习方法(李航)第三章 k近邻贝叶斯定理:已知: 存在 KKK 类 c1,c2,...,cKc_1,c_2,...,c_Kc1​,c2​,...,cK​, 给定一个新的实例x=(x(1),x(2),...,x(n))x=(x^{(1)},x^{(2)},...,x^{(n)})x=(x(1),x(2),...,x(n))问: 该实例属于cic_ici​类的概率是多少?P(Y=ci∣X=x)=P(X=x∣Y=ci)∗P(Y

2025-04-29 21:26:33 1147

原创 统计学习方法(李航) 第三章 k近邻算法

k近邻法是一种基本的分类与回归方法, 其主要思想是: 假定给定一个训练集, 其中的实例标签已定, 当输入新的实例时, 可以根据其最近的k个训练实例的标签, 预测新实例对应的标注信息分类问题: 对新的实例, 通过与之相邻的k个训练实例的类别, 通过多数表决等方式进行预测回归问题: 对新的实例, 根据与之相邻的k个训练实例的标签, 通过均值计算进行预测输入: 训练集T{(x1​y1​x2​y2​...xn​yn​)}xi​∈X⊆Rny∈Yc。

2025-04-28 19:25:50 693

原创 统计学习方法(李航) 第一章 绪论

按照算法分类按照技巧分类按照模型分类。

2025-04-28 19:23:37 996

原创 统计学习方法(李航)第二章 感知机笔记

X⊆Rn;输入:xx1x2...xnT∈X输出空间:Y1−1;输出:y=∈Yfxsignw∗xb1w∗xb≥0−1w∗xb0​其中,wx1x2...xnT∈Rn称为权值, $b \in R $ 称为偏置,w∗x表示内积假设空间:Ff∣fxw∗xb。

2025-04-28 19:20:00 990

原创 吴恩达Transformer2025版最新讲解(课程详细笔记)

在前面我们讨论了transformer如何进行模块的堆叠,在语言模型处理的最后阶段,会被转换为某种评分或标记概率的计算。所以语言模型头的结果是这种标记概率评分,表明在所有已知的token中每个token各自都多少概率会被输出,这些概率之和也就是百分之一百。贪婪解码(如选择最高概率的token)生成确定性结果,但可能陷入局部最优;Top-p(核采样)从累积概率阈值内的候选集中随机抽取,平衡多样性与合理性,因此相同提示会产生不同输出。这是解码策略差异导致的生成结果波动。

2025-03-11 23:27:06 1499

原创 Yolo v8自学笔记(超详细,逐模块学习,deepseek指导)

Yolo v8 通过deepseek指导,逐模块学习

2025-03-07 23:04:11 4313 1

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除