Python数据结构与算法——算法(贪心算法、动态规划)

本文介绍了贪心算法的概念及其在找零、背包问题(0-1背包与分数背包)、拼接最大数字、活动选择以及动态规划(如斐波那契数列、钢条切割问题)中的应用实例,展示了如何解决这些问题并利用最优子结构的思想进行求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贪心算法

介绍:贪心算法又称贪婪算法,是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,它所做出的是在某种意义上的局部最优解。

贪心算法并不保证会得到最优解,但是在某些问题上贪心算法的解就是最优解。要会判断一个问题能否用贪心算法来计算。

例一:找零问题

问题:假设商店老板需要找零n元钱,钱币的面额有:100元、50元、20元、5元、1元,如何找零使得所需的钱币数量最少?

思路:为了找的钱币最少,从最大面额找,找不开就用比它小的找...

t = [100, 50, 20, 5, 1]

def change(t, n):
    m = [0 for _ in range(len(t))]
    for i, money in enumerate(t):
        m[i] = n // money
        n = n % money
    return m, n

print(change(t, 376))

 例二:背包问题

问题:一个小偷在某个商店发现有n个商品,第i个商品价值vi元,重wi千克。他希望拿走的价值尽量高,但他的背包最多只能容纳W千克的东西。他应该拿走哪些商品?

  • 0-1背包:对于一个商品,小偷要么把它完整拿走,要么留下。不能只拿走一部分,或把一个商品拿走多次。(商品为金条)
  • 分数背包:对于一个商品,小偷可以拿走其中任意一部分。(商品为金砂)

分数背包使用贪心算法没有问题,但是0-1背包不可以!

分数背包

goods = [(60, 10), (120, 30), (100, 20)]  # 每个商品元组表示(价格, 重量)
goods.sort(key = lambda x:x[0]/x[1], reverse = True)  # 按照单价排序

def fractional_backpack(goods, w):    
    m = [0 for _ in range(len(goods))]
    total_v = 0
    for i, (price, weight) in enumerate(goods):
        if w >= weight:
            m[i] = 1
            w -= weight
            total_v += price
        else:
            m[i] = w/weight
            total_v += m[i] * price
            w = 0
            break
    return m, total_v


print(fractional_backpack(goods, 50))

例三:拼接最大数字问题 、

问题:有n个非负整数,将其按照字符串拼接的方式拼接为一个整数,如何拼接可以使得

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值