Flink流计算常用算子大全

本文详细介绍了Flink的算子,分为DataSet和DataStream两大类。阐述了DataSet的Source、Transform和Sink算子,如fromCollection、map、collect等;也介绍了DataStream的相关算子,包括addSource、KeyBy、sink到kafka等,为Flink开发提供了全面的算子知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Flink的算子分为两大类:一类是DataSet,一类是DataStream

DataSet

一、Source算子

1. fromCollection

fromCollection:从本地集合读取数据

例:

val env = ExecutionEnvironment.getExecutionEnvironment
val textDataSet: DataSet[String] = env.fromCollection(
  List("1,张三", "2,李四", "3,王五", "4,赵六")
)

2. readTextFile

readTextFile:从文件中读取

val textDataSet: DataSet[String]  = env.readTextFile("/data/a.txt")

3. readTextFile:遍历目录

readTextFile可以对一个文件目录内的所有文件,包括所有子目录中的所有文件的遍历访问方式

val parameters = new Configuration
// recursive.file.enumeration 开启递归
parameters.setBoolean("recursive.file.enumeration", true)
val file = env.readTextFile("/data").withParameters(parameters)

4. readTextFile:读取压缩文件

对于以下压缩类型,不需要指定任何额外的inputformat方法,flink可以自动识别并且解压。但是,压缩文件可能不会并行读取,可能是顺序读取的,这样可能会影响作业的可伸缩性。

val file = env.readTextFile("/data/file.gz")

二、Transform转换算子

因为Transform算子基于Source算子操作,所以首先构建Flink执行环境及Source算子,后续Transform算子操作基于此:

val env = ExecutionEnvironment.getExecutionEnvironment
val textDataSet: DataSet[String] = env.fromCollection(
  List("张三,1", "李四,2", "王五,3", "张三,4")
)

1. map

将DataSet中的每一个元素转换为另外一个元素

// 使用map将List转换为一个Scala的样例类

case class User(name: String, id: String)

val userDataSet: DataSet[User] = textDataSet.map {
  text =>
    val fieldArr = text.split(",")
    User(fieldArr(0), fieldArr(1))
}
userDataSet.print()

2. flatMap

将DataSet中的每一个元素转换为0...n个元素。

// 使用flatMap操作,将集合中的数据:
// 根据第一个元素,进行分组
// 根据第二个元素,进行聚合求值 

val result = textDataSet.flatMap(line => line)
      .groupBy(0) // 根据第一个元素,进行分组
      .sum(1) // 根据第二个元素,进行聚合求值
      
result.print()

3. mapPartition

将一个分区中的元素转换为另一个元素

// 使用mapPartition操作,将List转换为一个scala的样例类

case class User(name: String, id: String)

val result: DataSet[User] = textDataSet.mapPartition(line => {
      line.map(index => User(index._1, index._2))
    })
    
result.print()

4. filter

过滤出来一些符合条件的元素,返回boolean值为true的元素

val source: DataSet[String] = env.fromElements("java", "scala", "java")
val filter:DataSet[String] = source.filter(line => line.contains("java"))//过滤出带java的数据
filter.print()

5. reduce

可以对一个dataset或者一个group来进行聚合计算,最终聚合成一个元素

// 使用 fromElements 构建数据源
val source = env.fromElements(("java", 1), ("scala", 1), ("java", 1))
// 使用map转换成DataSet元组
val mapData: DataSet[(String, Int)] = source.map(line => line)
// 根据首个元素分组
val groupData = mapData.groupBy(_._1)
// 使用reduce聚合
val reduceData = groupData.reduce((x, y) => (x._1, x._2 + y._2))
// 打印测试
reduceData.print()

6. reduceGroup

将一个dataset或者一个group聚合成一个或多个元素
reduceGroup是reduce的一种优化方案;
它会先分组reduce,然后在做整体的reduce;这样做的好处就是可以减少网络IO

// 使用 fromElements 构建数据源
val source: DataSet[(String, Int)] = env.fromElements(("java", 1), ("scala", 1), ("java", 1))
// 根据首个元素分组
val groupData = source.groupBy(_._1)
// 使用reduceGroup聚合
val result: DataSet[(String, Int)] = groupData.reduceGroup {
      (in: Iterator[(String, Int)], out: Collector[(String, Int)]) =>
 
<think>好的,用户想了解Flink常用算子及其用法。首先,我需要回忆Flink的核心算子,并按照分类来组织,比如数据转换、合并、分区等。记得用户之前提到的引用内容中有提到23种常用算子,可能需要参考这些分类。 首先,Flink算子可以分为几大类:数据转换(如map、flatMap、filter)、数据合并(如union、connect)、数据分区(如keyBy、shuffle)、窗口操作(如window、join)等。每个类别下需要列出具体的算子,并给出示例代码,这样用户更容易理解。 接下来,要注意用户提到的格式要求,行内数学表达式用$...$,独立公式用$$...$$,但这个问题可能更多涉及代码示例,所以需要确保代码块正确使用反引号包裹,并标明语言类型。比如Python示例需要用python标签。 然后,每个算子需要简要说明其作用和使用场景,例如map用于一对一转换,flatMap用于一对多。同时,代码示例要简洁明了,比如map的例子可以是简单的数值转换,flatMap可以是拆分字符串。 用户可能还关心算子的链式操作,比如startNewChain和disableChaining,这些优化技巧也需要提及。另外,侧输出流(Side Output)也是一个重要概念,可以举例说明如何将不同数据分流处理。 关于窗口操作,需要提到时间窗口和计数窗口,比如滚动窗口和滑动窗口的区别,并给出相应的代码片段。例如,TumblingProcessingTimeWindows表示滚动处理时间窗口。 还要注意用户提到的引用文献,引用[1]和[2]中提到的union、window join、connect等算子需要包含在回答中。例如,union用于合并多个流,connect则用于连接不同类型的流,处理后再分开。 最后,生成相关问题需要考虑用户可能想深入的方向,比如性能优化、实际应用案例、状态管理或容错机制。这样能帮助用户进一步学习。 需要检查是否所有示例代码都符合Flink的DataStream API,特别是Java和Python的不同语法。用户可能需要多语言的示例,但根据问题描述,示例可能以Python为主,或者需要明确说明语言类型。 总结下来,回答的结构应该是先分类介绍常用算子,每个算子给出说明和代码示例,最后附上相关问题。确保引用标记正确,如[^1][^2]放在对应的位置,比如在union、connect等算子说明后。</think>以下为Flink常用算子的分类说明及使用示例,结合DataStream API(Java/Python)实现: --- ### 一、基础转换算子 1. **Map** - 作用:一对一转换数据元素 - 示例: ```java DataStream<Integer> numbers = env.fromElements(1, 2, 3); numbers.map(x -> x * 2); // 输出2,4,6 ``` 2. **FlatMap** - 作用:一对多转换,可输出0或多个元素 - 示例: ```python data_stream.flat_map(lambda x: x.split(" ")) # 拆分字符串为单词 ``` 3. **Filter** - 作用:过滤不符合条件的元素 - 示例: ```java dataStream.filter(x -> x.contains("error")); // 筛选含error的日志 ``` --- ### 二、流合并算子 4. **Union** - 作用:合并多个同类型数据流 - 示例: ```python stream1.union(stream2, stream3) # 合并3个流[^1] ``` 5. **Connect** - 作用:连接不同类型数据流,形成ConnectedStreams - 示例: ```java ConnectedStreams<String, Integer> connected = stream1.connect(stream2); connected.map(new CoMapFunction<>() { public String map1(String value) { return value.toUpperCase(); } public Integer map2(Integer value) { return value * 10; } }); ``` --- ### 三、数据分区算子 6. **KeyBy** - 作用:按指定键进行逻辑分区 - 示例: ```python data.key_by(lambda x: x[0]) # 按元组第一个字段分区 ``` 7. **Shuffle** - 作用:随机均匀分配数据 - 示例: ```java dataStream.shuffle(); ``` --- ### 四、窗口操作 8. **Tumbling Window** - 作用:固定大小的无重叠窗口 - 示例: ```java dataStream.keyBy(0) .window(TumblingProcessingTimeWindows.of(Time.seconds(5))); ``` 9. **Sliding Window** - 作用:带滑动步长的窗口 - 示例: ```python data.key_by("user_id").window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5))) ``` --- ### 五、高级功能 10. **Side Output** - 作用:将特殊数据分流处理 - 示例: ```java OutputTag<String> lateDataTag = new OutputTag<>("late-data"); SingleOutputStreamOperator mainStream = stream.process(new ProcessFunction() { public void processElement(...) { if (isLateData(...)) { ctx.output(lateDataTag, value); } } }); ``` 11. **Iterate** - 作用:创建迭代循环 - 示例: ```java IterativeStream<Integer> iteration = numbers.iterate(); iteration.closeWith(iteration.filter(x -> x > 0)); // 持续处理正数[^1] ``` --- ### 六、性能优化算子 12. **Caching** - 作用:缓存数据集减少重复计算 - 示例: ```python cached_data = data_stream.cache() ``` --- ### 七、输出算子 13. **AddSink** - 作用:自定义输出到外部系统 - 示例: ```java stream.addSink(new ElasticsearchSink<>(config, transportClientProvider)); ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值