目录
1.加载预训练好的AlexNet模型
# 加载预训练好的AlexNet模型
alexnet = models.alexnet(pretrained=True)
2.定义图片文件路径列表
# 定义图片文件路径列表
image_files = ['image1.jpg', 'image2.jpg', 'image3.jpg']
3.加载ImageNet的类别标签文件
# 加载ImageNet的类别标签文件
labels_url = "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt"
class_labels = requests.get(labels_url).text.split('\n')
class_labels是切分好的种类名称
4.图像预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
input_image = transform(image).unsqueeze(0)
-
transform = transforms.Compose([...]):transforms.Compose是一个将多个转换操作组合起来的类,可以将多个数据转换操作依次执行。在这里,我们定义了一个包含多个数据转换操作的列表。