利用AlexNet模型进行图片分类

目录

1.加载预训练好的AlexNet模型

2.定义图片文件路径列表

3.加载ImageNet的类别标签文件

4.图像预处理

5.利用预训练好的AlexNet模型进行图像分类

6.获取预测结果的类别名称  


1.加载预训练好的AlexNet模型
# 加载预训练好的AlexNet模型
alexnet = models.alexnet(pretrained=True)
2.定义图片文件路径列表
# 定义图片文件路径列表
image_files = ['image1.jpg', 'image2.jpg', 'image3.jpg']
3.加载ImageNet的类别标签文件
# 加载ImageNet的类别标签文件
labels_url = "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt"
class_labels = requests.get(labels_url).text.split('\n')

class_labels是切分好的种类名称

4.图像预处理
    transform = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    input_image = transform(image).unsqueeze(0)
  • transform = transforms.Compose([...]):transforms.Compose是一个将多个转换操作组合起来的类,可以将多个数据转换操作依次执行。在这里,我们定义了一个包含多个数据转换操作的列表。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值