Pytorch中Dataset的使用

该文介绍了如何在Python中利用torch.utils.data.Dataset类创建自定义数据集。通过一个名为MyData的类,将图片路径和对应的标签加载到数据集中,然后展示如何访问并显示数据集中的第一张图片。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dataset的使用:

主要代码:

import os
dir_path="D:\\tensorflowdata\\number_gen"
img_path_list=os.listdir(dir_path)#读取dir_path路径下number_gan文件内的文件名的列表
img_path_list[0]
#输出:'00000.png'

整体代码:

from torch.utils.data import Dataset
from PIL import Image
import os

class MyData(Dataset):
    def __init__(self,root_dir,label_dir):
        self.root_dir=root_dir#获取文件目录
        self.label_dir=label_dir#获取标签(以标签命名的文件名)
        self.path=os.path.join(self.root_dir, self.label_dir)#拼接两个路径
        self.img_path=os.listdir(self.path)#获得path路径下的文件名列表
        
    def __getitem__(self, index):
        img_name=self.img_path[index]#获取每张图片的文件名
        img_item_path=os.path.join(self.root_dir, self.label_dir,img_name)#获取每张图片的地址
        img=Image.open(img_item_path)#图片信息
        label=self.label_dir#标签
        return img,label#返回图片和标签
    
    def __len__(self):
        return len(self.img_path)#输出图片的张数
    
    
root_dir="D:\\tensorflowdata"    
label_dir="number_gen"
gan_dataset=MyData(root_dir, label_dir)
print(gan_dataset[0])   
img,label=gan_dataset[0]#传递第一张图片及其标签
img.show() #显示图片

#输出为:
#(<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=288x288 at 0x2B89BE97130>, 'number_gan')
#100

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值