1.铺垫概念
⭐有向无环图(DAG图)
有向无环图是一种特殊的图数据结构。在这样的图中,节点之间通过有向边连接,表示从一个节点到另一个节点的单向关系,并且不存在任何形式的环路,即没有路径可以让你从一个节点出发,沿着一系列有向边最终又回到该节点。
- 有向性:图中的每条边都有方向,可以用箭头表示,指示从起点到终点的单向关系。
- 无环性:是说在图中找不到一个起点到终点的路径,其中起点和终点为同一个点,或者通过一系列边能够形成一个环状结构。这意味着从任意节点出发,沿着边走,你永远不会回到起点或之前访问过的节点。
- 入度:指有多少条有向边指向该节点。
- 出度:指从该节点出发的有向边的数。
⭐AOV网 - 顶点活动图
AOV网就是在有向无环图中每一个顶点代表一个活动,而有向边则表示活动之间的优先关系的图结构。
⭐拓扑排序
拓扑排序是对一个有向无环图的顶点进行排序的一种方法,找到做事情的先后顺序,拓扑排序的结果可能不唯一。
进行拓扑排序的步骤通常如下:
- 选择起点:选择一个入度为0的顶点并输出。
- 删除起点及关联边:从图中删除该顶点及其所有出度边。
- 重复上述两步,直到当前图中没有节点为止(无环)或者没有入度为0的点为止(有环)。如果在这个过程中能访问到所有节点,说明原图是一个有向无环图,且存在至少一种拓扑排序;反之,如果还有节点未被访问到,则说明原图中存在环,无法进行拓扑排序。
应用:判断图中是否有环。
⭐拓扑排序的实现