随着目标检测领域的快速发展,YOLO系列模型凭借其端到端、高效的检测性能逐渐成为工业界和学术界的标杆。然而,如何进一步优化YOLOv11的特征提取能力,减少冗余信息并提升模型对复杂场景的适应性,仍是一个值得深入探讨的问题。为此,本文将自适应稀疏自注意力ASSA机制引入YOLOv11,以优化目标检测模型中的特征提取过程。ASSA最早应用于图像恢复任务,通过减少噪声交互并保留重要的特征信息,显著提升了模型的处理效率。本文将探讨如何将ASSA机制与YOLOv11结合,以实现更高效的目标检测。
代码:YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_improve
1. ASSA的概述:
Adaptive Sparse Self-Attention(ASSA)是自适应稀疏Transformer(AST)模型中的关键组件,主