
YOLO12双backbone
文章平均质量分 88
一勺汤
论文辅导,代码改进,联系v:17329949407
购买资源 截屏加群:3671595590
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLO双backbone改进 使用Mona主干替换原backbone
Mona提出了一种创新的视觉适配器方案,通过多尺度深度卷积和输入优化机制,解决了双Backbone架构下全量微调的资源消耗问题。其核心采用3×3/5×5/7×7多尺度卷积组捕捉不同层级视觉特征,配合缩放归一化层调节输入分布,在YOLO等模型中实现了超越全量微调的性能。实验表明,Mona在COCO等数据集上有效平衡了双Backbone的特征融合,尤其提升了小目标检测能力,为高效视觉模型优化提供了新范式。(149字)原创 2025-06-17 07:53:33 · 951 阅读 · 0 评论 -
YOLO双backbone改进 使用MambaOut 主干替换原backbone
MambaOut提出了一种针对视觉任务的轻量化架构,通过移除Mamba模型的状态空间模型(SSM),仅保留门控CNN块,实现了更高效的视觉特征提取。研究表明,视觉任务主要依赖局部特征和并行计算,而非Mamba的长序列建模优势。MambaOut采用分层门控CNN设计,参数规模减少40%-60%,计算量降低30%以上,在ImageNet分类中性能超越视觉Mamba模型。该架构可轻松集成到YOLO等目标检测框架中,尤其适合短序列和非自回归任务。原创 2025-06-13 08:32:40 · 2072 阅读 · 0 评论 -
YOLOv12 双 Backbone 架构:从单路到多径的特征革命,增加你论文的创新点,轻松发SCI
双Backbone架构在实时目标检测领域应运而生,旨在突破传统单Backbone架构的局限性。单Backbone架构如YOLOv12虽在速度和精度上取得平衡,但在特征表达和模态融合方面存在不足,尤其在复杂场景和多尺度目标检测中表现受限。双Backbone架构通过并行特征提取路径,实现多维度信息互补,提升模型性能。其设计包括共享输入型和双输入型,前者通过不同Backbone提取多层次特征并融合,后者处理不同输入源以支持跨模态融合。多元组合策略如CNN+CNN、CNN+Transformer和CNN+Mamba原创 2025-05-22 11:58:03 · 1561 阅读 · 0 评论