- 博客(96)
- 收藏
- 关注
原创 3D视觉:从2D图像重建三维世界的技术革命
3D视觉是指通过计算机技术从二维图像或视频中获取、处理、分析和理解三维空间信息的一系列方法。其核心目标是重建三维场景的几何结构和外观属性,使计算机能够像人类一样感知和理解三维世界。3D视觉的主要任务三维重建:从单张或多张2D图像恢复场景的3D结构深度估计:计算图像中每个像素与相机的距离点云处理:对三维点数据进行分类、分割和识别立体匹配:从多视角图像中找到对应点以计算深度表面重建:从离散点数据生成连续表面模型3D目标检测与识别:在三维空间中定位和识别物体。
2025-07-14 13:27:09
437
原创 基于OpenCV的深度学习人脸识别系统开发全攻略(DNN+FaceNet核心技术选型)
摘要:本文介绍了基于OpenCV和FaceNet的人脸识别考勤系统核心技术选型与实现方案。系统采用OpenCV DNN模块加载Caffe模型进行高效人脸检测,使用FaceNet提取128维人脸特征,并通过MiniConda管理Python环境。文章详细说明了项目结构、环境配置步骤,并提供了人脸检测和特征提取的核心代码实现。此外还探讨了使用OpenVINO进行模型加速的优化方案,为构建高效准确的人脸识别考勤系统提供了完整的技术路线。
2025-07-14 11:29:40
667
原创 视频分析:让AI看懂动态画面
视频分析是指通过计算机算法自动解析视频内容,提取有意义信息的技术过程。低级特征提取:包括运动估计、光流计算、场景切割等基础处理,为高层分析提供素材。中级语义分析:涉及物体检测与跟踪、动作识别、事件检测等,将原始特征转化为有意义的语义单元。高级理解与推理:包括活动理解、意图预测、因果推理等,实现对视频内容的深层解读。视频分类:为整个视频分配类别标签(如"篮球比赛"、“新闻播报”)时序动作检测:定位视频中特定动作的发生时段视频物体检测与跟踪:识别并追踪视频中的物体运动轨迹视频描述生成。
2025-07-10 13:50:23
548
原创 VSCode配置PHP环境教程:零基础也能轻松运行PHP项目
作为计算机小白,想用VSCode运行PHP项目却不知从何下手?别担心!这篇教程将用最通俗易懂的方式,手把手教你完成PHP环境配置和项目运行。无需任何编程基础,跟着做就能成功!
2025-07-10 13:40:52
926
原创 基于OpenCV的实时人脸检测系统实现指南 ——Python+Haar级联分类器从环境搭建到完整部署
本文详细介绍使用OpenCV库和Haar级联分类器实现实时人脸检测的全流程,涵盖环境配置、模型加载、检测算法调优及异常处理方案。通过20行核心代码演示计算机视觉基础应用的快速开发。(关键词:OpenCV、人脸检测、Haar特征、Python)
2025-07-09 17:15:50
1113
原创 图像生成与增强:AI也能当画家
AI图像生成指的是使用人工智能算法自动创建或合成视觉内容的过程。与传统的图像处理不同,AI图像生成不是对现有图像的简单修改,而是从零开始创造出全新的视觉内容,这些内容可以基于文本描述、草图、噪声或其他输入条件。表示学习:如何将高维复杂的图像数据转化为机器可以理解和处理的表示形式分布建模:如何学习并模拟自然图像的统计分布规律条件控制:如何根据不同的输入条件(如文本、类别等)指导生成过程质量评估:如何确保生成图像的视觉质量和语义一致性AI图像生成可以分为无条件生成和条件生成两大类。
2025-07-09 13:39:12
717
原创 姿态估计:捕捉人体动作的科技艺术
姿态估计,在计算机视觉领域,指的是通过算法自动检测图像或视频中人体关键点位置并推断人体姿态的过程。这些关键点通常对应人体的主要关节和特征部位,如肩膀、肘部、手腕、臀部、膝盖和脚踝等。根据不同的应用需求,关键点的数量可以从十几个到几十个不等。从技术角度看,姿态估计需要解决几个核心问题:首先是如何在各种复杂环境下(如遮挡、光照变化、服装差异等)准确定位人体部位;其次是如何理解这些部位之间的空间关系,构成合理的人体姿态;最后是如何在不同帧之间保持姿态的连贯性(针对视频输入)。
2025-07-09 13:27:03
904
原创 人脸识别:从解锁手机到安防的技术演进与应用实践
人脸识别(Face Recognition)是一种基于人的面部特征信息进行身份识别的生物识别技术。它通过采集和分析人脸图像或视频流中的视觉特征,自动检测、跟踪和识别面部,进而对人物身份进行验证或识别。技术发展里程碑1960s:早期探索阶段,Woody Bledsoe等人开发了第一个半自动人脸识别系统1990s:特征脸(Eigenfaces)方法提出,标志着人脸识别进入算法化阶段2001年:Viola-Jones人脸检测框架诞生,实时人脸检测成为可能2014年。
2025-07-07 09:33:27
664
原创 图像分割:像素级理解图像的艺术与科学
图像分割的本质是将图像划分为若干个具有特定语义的区域,这些区域通常对应于现实世界中的不同物体或物体部分。从技术角度看,图像分割任务可以形式化为一个逐像素的分类问题:对于给定的图像I,其尺寸为H×W,分割目标是为每个像素(i,j)分配一个标签l∈L,其中L是预定义的标签集合。语义分割(Semantic Segmentation):为图像中的每个像素分配一个类别标签,不区分同一类别的不同实例。例如,将图像中所有"人"的像素标记为"人"类别,而不关心这些人是否为同一个体。
2025-07-07 09:25:22
804
原创 目标检测:从基础原理到前沿技术全面解析
目标检测技术综述 目标检测是计算机视觉的核心任务,旨在识别图像中的物体并确定其位置。本文系统梳理了目标检测技术的发展历程、关键方法和应用挑战。 传统方法主要依赖手工设计的特征(如HOG、SIFT)和分类器,虽然计算量大但思想至今仍有价值。深度学习时代的两阶段检测器(如R-CNN系列)通过区域提议和分类回归显著提升了精度,而单阶段检测器(如YOLO、SSD)则实现了速度突破。Transformer架构的引入进一步推动了端到端检测的发展。 目标检测面临尺度变化、遮挡、实时性等多重挑战,在自动驾驶、医疗影像等领域
2025-07-03 15:43:02
888
原创 图像分类:从基础原理到前沿技术
图像分类(Image Classification)是计算机视觉中的一项核心任务,其目标是将输入的图像自动分配到一个或多个预定义的类别标签中。简单来说,就是让计算机"看懂"图像内容并对其进行归类。技术定义:给定一个包含N个类别的分类系统,图像分类的任务是构建一个预测模型f,使得对于任意输入图像I,都能输出一个类别标签y∈{1,2,…,N},或者输出一个概率分布p(y|I),表示图像属于各个类别的可能性。图像分类作为计算机视觉的基础任务,在过去十年中取得了令人瞩目的进展。
2025-07-03 15:30:53
997
原创 机器学习在计算机视觉中的应用
机器学习正在让计算机视觉变得更强大、更智能,从医疗诊断到自动驾驶,从安防监控到艺术创作,它的应用几乎无处不在。未来,随着多模态大模型(如GPT-4V)的发展,计算机视觉可能会进一步融合语言、语音等多种信息,带来更自然的人机交互体验。在本篇博客中,我们将介绍机器学习在计算机视觉中的主要应用方向,并结合实际案例,帮助大家理解这些技术如何改变我们的生活。在医疗领域,斯坦福大学的研究团队利用CNN(卷积神经网络)训练了一个模型,能够以超过专业医生的准确率识别皮肤癌。你对计算机视觉的哪个应用最感兴趣?
2025-07-02 17:06:31
1136
原创 【小白也能看懂】YOLOv5 + VOC2012 超详细环境配置与模型训练教程(含数据集转换)
本教程将手把手带你完成YOLOv5从环境搭建到模型训练的全过程,针对VOC2012数据集进行详细说明。教程面向零基础学习者,每个步骤都包含详细说明和验证方法。
2025-07-02 10:50:33
783
原创 使用Ngrok将Python Flask应用快速发布为手机可访问的Web应用
在上一教程中,我们学习了如何将Tkinter程序转换为Flask Web应用。但要让手机能够访问,通常需要部署到云服务器,这对初学者来说可能有些复杂。本教程将介绍使用Ngrok这一神器,无需购买服务器,一键将本地Flask应用暴露到公网,让手机立即可以访问!为本地开发服务器创建安全的公网URL无需配置路由器或防火墙支持HTTP/HTTPS协议完全免费(基础功能)然后可以通过访问使用Ngrok快速暴露本地Flask应用到公网手机访问测试Web应用移动端优化技巧安全注意事项完整流程。
2025-06-25 15:35:44
880
原创 将Python Tkinter程序转换为手机可运行的Web应用 - 详细教程
作为一名Python开发者,你可能已经使用Tkinter创建了一些桌面GUI应用。但是如何让这些应用也能在手机上运行呢?本教程将详细介绍如何将基于Tkinter的Python程序转换为手机可访问的Web应用,让你的应用随时随地可用!分析Tkinter应用的组件结构使用Flask创建Web界面设计响应式布局适配手机部署Web应用到云端最终效果:用户只需在手机浏览器中打开URL即可使用你的应用,无需安装任何额外软件!
2025-06-25 15:34:39
549
原创 【超详细】Ngrok 下载安装配置教程(Windows版)| 内网穿透神器 | 附常见问题解决
Ngrok是一款便捷的内网穿透工具,可快速将本地服务(如Flask、Django)暴露到公网,生成临时网址供外网访问。Windows用户可通过官网下载ngrok.exe并配置环境变量,或使用pip安装pyngrok(需稳定网络)。从Ngrok v3开始,必须注册账号获取Authtoken并配置。使用时只需启动ngrok指定本地端口,即可获得公网访问链接。常见问题包括网络超时、未配置Authtoken等,解决方案包括手动下载、检查防火墙设置等。免费版域名不固定,付费可绑定自定义域名。替代方案包括局域网直连或使
2025-06-20 23:50:17
1432
原创 Python爬虫(七):PySpider 一个强大的 Python 爬虫框架
中小规模爬虫、需要可视化管理的项目、快速开发爬虫任务。:复杂爬取逻辑不如 Scrapy 方便。,PySpider 是一个不错的选择!:遇到问题可能需要自己解决。PySpider 是由。PySpider 采用。:可视化任务监控、调试。:适合新手快速上手。:可扩展至多机爬取。
2025-06-19 17:18:40
1387
原创 Python爬虫(六):Scrapy框架
"Scrapy到底该怎么学?"今天,我将用这篇万字长文,带你从零开始掌握Scrapy框架的核心用法,并分享我在实际项目中的实战经验!很多新手会问:“我已经会用Requests+BeautifulSoup了,为什么还要学Scrapy?:如果是小型项目,Requests够用;但如果是商业级爬虫,Scrapy是更好的选择!(图解Scrapy架构,建议配合流程图理解)返回Response。
2025-06-19 17:13:43
1097
原创 Python爬虫(五):Selenium自动化测试框架
本文全面介绍了Selenium自动化测试框架的核心功能与应用方法。主要内容包括:Selenium的四大组件(WebDriver、IDE、Grid)及其跨平台、多语言支持等优势;详细的Python环境配置与浏览器驱动安装指南;八大元素定位方法及常用API操作;等待机制、弹窗处理等高级技巧;最后通过百度搜索自动化测试案例展示实战应用。该教程适合测试开发初学者系统学习Selenium,掌握Web自动化测试的核心技能。
2025-06-16 16:23:17
1267
原创 selenium.common.exceptions.NoSuchDriverException: Message: Unable to obtain driver for chrome;
本文详细解析了Selenium测试环境中常见的"NoSuchDriverException"错误。文章首先分析了错误信息的深层含义和典型发生场景,指出问题根源在于Selenium WebDriver组件协同失败。然后提供了三种全面解决方案:推荐使用WebDriver Manager自动管理驱动版本;传统的手动管理ChromeDriver方法,包括详细的版本匹配规则;以及适用于CI/CD环境的Docker容器化方案。每种方案都包含具体实现步骤、适用场景、配置示例和可能遇到的问题解决方法
2025-06-16 14:40:08
1295
原创 【超详细】Chromedriver安装配置全攻略|Selenium自动化必备
作为Selenium自动化测试的第一个拦路虎,我在初学阶段曾被Chromedriver折磨到崩溃:❌ 明明代码正确却报WebDriverException❌ 熬夜下载了驱动却版本不匹配
2025-06-16 14:05:45
1587
原创 深入理解Optional:处理空指针异常
明确表达了"可能没有值"的语义减少了显式的null检查提供了函数式风格的操作方法使代码更加简洁和可读通过合理使用Optional,我们可以编写出更安全的代码,有效减少空指针异常的发生。但同时也要注意它的适用场景,避免滥用。
2025-06-09 14:40:25
769
原创 Python爬虫(四):PyQuery 框架
记住:工具没有绝对优劣,只有适合与否。掌握两者的特点,就能根据实际需求做出最佳选择!PyQuery 是一个 Python 的 HTML/XML 解析库,它采用了。,让开发者能够用类似前端 jQuery 的方式处理文档解析。需要jQuery风格语法?需要处理复杂/脏HTML?
2025-06-09 14:33:59
1037
原创 Python爬虫(三):BeautifulSoup库
BeautifulSoup 是一个 Python 库,专门用来解析 HTML 或 XML 文件,方便我们提取数据。它能把网页源代码转换成树形结构,让我们可以轻松查找、修改内容,并自动处理编码问题(如 Unicode 和 UTF-8)。
2025-06-09 10:04:34
347
原创 Robots.txt 文件
,它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots 排除协议(REP),告诉爬虫哪些页面或目录可以访问,哪些应该避免。
2025-06-09 09:15:37
516
原创 Python爬虫(一):爬虫伪装
在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度面对这些防御措施,我们需要让爬虫行为尽可能模拟普通用户,才能成功获取所需数据。本文将全面解析爬虫伪装的核心技术。
2025-06-06 10:23:04
944
原创 HTML、XML、JSON 是什么?有什么区别?又是做什么的?
移动开发HTML 负责网页的“外貌”XML 和 JSON 负责网页的“内容”XML 是过去的数据格式标准,适合严谨的场景。
2025-05-29 15:42:52
1400
原创 Python 进阶【三】:Excel操作
在数据处理领域,Excel是最常用的工具之一。大规模数据集重复性操作复杂计算和分析时,手动操作效率低下且容易出错。Python提供了多种强大的库来自动化这些流程。项目开始前明确需要处理的Excel版本(xls还是xlsx)评估需要的功能(是否需要图表、条件格式等)考虑数据量大小代码编写时封装常用操作为函数添加适当的异常处理编写清晰的注释性能关键点批量操作优于单个单元格操作尽量减少样式设置大文件使用只读/只写模式扩展学习# 使用pandas简化数据分析。
2025-05-29 14:32:27
767
原创 Python 进阶【二】:多进程编程
进程(Process):操作系统分配资源的最小单位。每个运行中的程序就是一个进程。线程(Thread):进程内最小的执行单元,可看作轻量级进程。💡 Python 的多线程受 GIL 限制,在 CPU 密集型任务中难以实现真正的并行。多进程是绕过 GIL、充分利用多核 CPU 的推荐方式。应用场景推荐方案原因说明CPU 密集型任务多进程绕过 GIL,真正多核并行I/O 密集型任务多线程 / 协程利用线程或异步释放等待时间多任务并发管理进程池(Pool)
2025-05-28 17:34:14
733
原创 Python进阶【一】 :线程、进程与协程
场景类型优选方案说明CPU 密集型多进程利用多核,规避 GILI/O 密集型多线程 / 协程异步执行阻塞操作,提升资源利用率网络并发协程 (asyncio万级并发连接,性能高GUI 程序子线程处理耗时任务避免主线程阻塞 UI特性线程进程协程是否受 GIL 限制是否是(但通常无影响)内存占用低高极低创建/销毁开销小大最小通信方式共享内存(需加锁)IPC(队列、管道)共享对象/await并行能力伪并行(受 GIL)真并行(多核)
2025-05-28 17:23:00
839
原创 I/O操作是什么?(超简单解释)
(如读写文件、网络请求)。正是因为要“等”,Python的多线程才能在I/O任务中提高效率!好的!我会用最简单的方式重新整理这些知识点,并用生活化的例子帮你理解。
2025-05-27 13:30:07
358
原创 Python基础语法(十二):闭包与装饰器
闭包是一个函数对象,它记住了创建它的环境中的变量值,即使那个环境已经不存在了。简单来说,闭包是"带着环境的函数"。比如我们调用一个带有返回值的函数 x,此时函数 x 为我们返回一个函数 y,这个函数 y 就被称作闭包所有装饰器都是闭包,但并非所有闭包都是装饰器装饰器是闭包在函数增强方面的专门应用理解闭包是掌握装饰器的基础装饰器通过语法提供了一种优雅的使用闭包的方式装饰器和闭包的关系就像"特种兵"和"士兵"的关系——装饰器是闭包在特定领域的专业化应用,具有更明确的目的和更优雅的使用方式。
2025-05-22 15:47:57
1057
原创 Python基础语法(十一):迭代器与生成器
return num# 使用print(num) # 输出5,4,3,2,1总结:迭代器提供了一种高效、统一的方式来逐个访问数据,特别适合处理大数据或需要延迟计算的场景。生成器就像一个"会暂停的函数",它能在产生一个值后"暂停"执行,等到下次需要时再继续执行。你可以把它想象成一个"自动创建迭代器的机器"。
2025-05-22 10:10:57
752
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人