数学 {极限,收敛,发散,震荡,极限存在,收敛数列,收敛函数}
@LOC: 5
极限
定义
#某一点的极限#
对于函数f(x)f(x)f(x), x0∈Rx_0 \in {\mathbb R}x0∈R, 且f(x)f(x)f(x)在某一U˚(x0)\mathring U(x_0)U˚(x0)(记作DDD)上有定义, 则limx→x0An\lim_{x \to x_0} A_nlimx→x0An表示: 该函数在x0x_0x0处的极限, 该极限有3种情况:
1: 等于某个实数LLL;
.
#当且仅当#: ∀ϵ>0,∃U˚(x0,δ)⊂D,∀x∈U˚(x0,δ),[∣f(x)−L∣<ϵ]\forall \epsilon > 0, \exist \mathring U(x_0,\delta) \subset D, \forall x \in \mathring U(x_0, \delta), [|f(x) - L| < \epsilon]∀ϵ>0,∃U˚(x0,δ)⊂D,∀x∈U˚(x0,δ),[∣f(x)−L∣<ϵ];
2: 等于+∞/−∞+\infty/ -\infty+∞/−∞;
.
极限为+∞+ \infty+∞ ⟺ \iff⟺ ∀ϵ>0,∃U˚(x0,δ)⊂D,∀x∈U˚(x0,δ),[f(x)>ϵ]\forall \epsilon > 0, \exist \mathring U(x_0,\delta) \subset D, \forall x \in \mathring U(x_0, \delta), [f(x)> \epsilon]∀ϵ>0,∃U˚(x0,δ)⊂D,∀x∈U˚(x0,δ),[f(x)>ϵ], 说明极限为+∞+\infty+∞;
.
对于极限为−∞-\infty−∞的情况 改为f(x)<−ϵf(x) < -\epsilonf(x)<−ϵ;
3: 不存在;
.
当1: 2:
都不满足时;
–
#无穷远处极限#
探讨函数在+∞+\infty+∞处的极限 (对于−∞-\infty−∞的情况 可以类似推导);
对于函数f(x)f(x)f(x), ∃M∈R\exist M \in \mathbb R∃M∈R f(x)f(x)f(x)在[M,+∞)[M, +\infty)[M,+∞)(记作DDD)上有定义, 则limx→+∞An\lim_{x \to +\infty} A_nlimx→+∞An表示: 该函数在+∞+\infty+∞处的极限, 该极限有3种情况:
1: 等于某个实数LLL;
.
#当且仅当#: ∀ϵ>0,∃[M′∈R,+∞)⊂D,∀x∈[M′,+∞),[∣f(x)−L∣<ϵ]\forall \epsilon > 0, \exist [M' \in \mathbb R, +\infty) \subset D, \forall x \in [M', +\infty), [|f(x) - L| < \epsilon]∀ϵ>0,∃[M′∈R,+∞)⊂D,∀x∈[M′,+∞),[∣f(x)−L∣<ϵ];
2: 等于+∞/−∞+\infty/ -\infty+∞/−∞;
.
极限为+∞+ \infty+∞ ⟺ \iff⟺ ∀ϵ>0,∃[M′∈R,+∞)⊂D,∀x∈[M′,+∞),[f(x)>ϵ]\forall \epsilon > 0, \exist [M' \in \mathbb R, +\infty) \subset D, \forall x \in [M', +\infty), [f(x) > \epsilon]∀ϵ>0,∃[M′∈R,+∞)⊂D,∀x∈[M′,+∞),[f(x)>ϵ], 说明极限为+∞+\infty+∞;
.
对于极限为−∞-\infty−∞的情况 改为f(x)<−ϵf(x) < -\epsilonf(x)<−ϵ;
3: 不存在;
.
当1: 2:
都不满足时;
这样分情况讨论有点麻烦, 我们可以统一到R‾\overline{ \mathbb R}R拓展实数域上讨论 然后定义某个U˚(+∞)\mathring U(+\infty)U˚(+∞)就对应上面的[M,+∞)[M, +\infty)[M,+∞) (类似可得到U˚(−∞)\mathring U(-\infty)U˚(−∞)); 这样就可以统一定义极限的概念:
前提: 函数f(x)f(x)f(x)在某一U˚(x0),x0∈R‾\mathring U(x_0), x_0 \in \overline{\mathbb R}U˚(x0),x0∈R上有定义;
结论: limx→x0f(x)\lim_{x \to x_0} f(x)limx→x0f(x)表示函数在x0x_0x0处的极限;
@DELI;
也可以对数列AnA_nAn取极限, 他等价于 limn→+∞f(x)\lim_{n \to +\infty} f(x)limn→+∞f(x) 定义f(n)=An,∀n∈N+f(n) = A_n, \forall n \in N^+f(n)=An,∀n∈N+;
对于数列的极限, 不用说: 数列在某点处的极限, 这是错误的! 就直接说: 该数列的极限;
性质
#等式两侧同取极限#
前提: f(x)=g(x)f(x) = g(x)f(x)=g(x), 且f(x)f(x)f(x)在U˚(x0)\mathring U(x_0)U˚(x0)上有定义, (隐喻了g(x)g(x)g(x)也会在该去心邻域上有定义)
结论: 等式两侧可以取极限 limx→x0f(x)=limx→x0g(x)\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x)limx→x0f(x)=limx→x0g(x);
@DELI;
#极限的等式, 两侧不可以去掉极限#
limx→x0f(x)=limx→x0g(x)\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x)limx→x0f(x)=limx→x0g(x), 你不可以把极限号给去掉 即f(x)=g(x)f(x) = g(x)f(x)=g(x)是错误的;
.
比如limx→0x=limx→0sin(x)\lim_{x \to 0} x = \lim_{x \to 0} sin(x)limx→0x=limx→0sin(x), 但显然x≠sin(x)x \neq sin(x)x=sin(x) (对于任意x∈U˚(0)x \in \mathring U(0)x∈U˚(0))
–
#要想去掉极限号, 可以通过差分函数来实现#
根据差分函数的定义g(x)=L−f(x)g(x) = L - f(x)g(x)=L−f(x), 因此limx→x0f(x)=L\lim_{x\to x_0}f(x) = Llimx→x0f(x)=L, 可推出 f(x)=L−g(x),∀x∈Dff(x) = L - g(x), \forall x \in D_ff(x)=L−g(x),∀x∈Df, 因为这是个等式 你可以对他所等价变换 比如最终变成了F(x)=G(x),∀x∈DfF(x) = G(x), \forall x \in D_fF(x)=G(x),∀x∈Df;
这个性质, 在证明 可导必连续时 会用到;
@DELI;
当看到limx→x0f(x)\lim_{x \to x_0} f(x)limx→x0f(x)这个式子时, 隐喻了: 函数一定在某个U˚(x0)\mathring U(x_0)U˚(x0)上有定义;
错误
#当看到limx→x0f(x)\lim_{x \to x_0} f(x)limx→x0f(x)这个式子时, 说明: f(x)f(x)f(x)在x0x_0x0处是收敛的;#
这是错误的! 因为极限分为3种情况: (1: 实数) (2: 无穷) (3: 不存在)
{收敛,发散,震荡,极限存在}
定义
#收敛# Converge
前提: 如果limx→x0f(x)\lim_{x \to x_0} f(x)limx→x0f(x)等于某个实数; (极限定义里的情况1:
)
结论: f(x)f(x)f(x)在x0x_0x0处收敛;
@DELI;
#发散# Diverge
前提: 如果limx→x0f(x)\lim_{x \to x_0} f(x)limx→x0f(x)不等于某个实数; (极限定义里的情况2: 3:
)
结论: f(x)f(x)f(x)在x0x_0x0处发散;
@DELI;
#震荡# Oscillatory
前提: 如果limx→x0f(x)\lim_{x \to x_0} f(x)limx→x0f(x)不存在; (极限定义里的情况3:
)
结论: f(x)f(x)f(x)在x0x_0x0处震荡;
@DELI;
#极限存在#
前提: 如果limx→x0f(x)\lim_{x \to x_0} f(x)limx→x0f(x)为某实数; (极限定义里的情况1:
)
结论: f(x)f(x)f(x)在x0x_0x0处极限存在;
错误
#极限存在, 则该极限值可以为无穷#
这是错误的, 极限存在 是指 他的极限值是等于某个具体的实数, 对于无穷 他的准确值是不确定的, 因此不可以称为极限存在;
性质
序列AnA_nAn收敛 ⟺ \iff⟺ 该序列为柯西序列;
因此, 如果其极限为无穷, 那么该序列一定不是柯西序列;
也就是, 极限等于{某实数, 无穷}, 这两种情况 虽然都称为极限存在, 但其实有很多不同;
.
如果在x0x_0x0处的极限等于某实数LLL, 那么 该一定会聚集在LLL旁边的; 用柯西序列的角度说, 即存在某个x0x_0x0的去心邻域DDD ∀x1,x2∈D,∣f(x1)−f(x2)∣<ϵ\forall x_1,x_2 \in D, |f(x_1) - f(x_2)| < \epsilon∀x1,x2∈D,∣f(x1)−f(x2)∣<ϵ;
.
但如果极限是无穷, 你并不能说 他们是聚集在无穷旁边的, 因为无穷 本身就不是一个定数; 比如limx→+∞x=+∞\lim_{x \to +\infty} x = +\inftylimx→+∞x=+∞, 比如令ϵ=100\epsilon = 100ϵ=100 并不能找到一个[M,+∞)[M, +\infty)[M,+∞)区间 使得该定义域里 任意两个函数值之差 是<100< 100<100;
收敛数列
定义
设一数列{An}\{A_n\}{An}:
前提: limn→+∞An\lim_{n \to +\infty} A_nlimn→+∞An等于某个实数;
结论: 该数列为收敛数列, 该数列的极限为 常数LLL;
相关定义
#无穷小数列#
前提: 数列A为收敛数列, 且其极限值为000;
结论: 数列A为无穷小数列;
@DELI;
MARK: @LOC_4
;
#收敛数列的差分数列#
收敛数列A的极限为LLL, 令数列B为{L−Ai}\{ L - A_i \}{L−Ai}(也可以是Ai−LA_i - LAi−L), 则数列B称为: A的差分数列;
.
即满足Ai+Bi=LA_i + B_i = LAi+Bi=L;
性质
#数列A的极限为LLL, 令数列B为A的差分数列, 则B的极限一定为000#
你可以想象: 数列A是二维坐标轴的函数, 当x→+∞x \to +\inftyx→+∞时 函数图像一定是趋于y=Ly = Ly=L这条直线, 而所谓趋于 也就是 函数图像 与 这条直线 之间的差距(也就是{Bi}\{B_i\}{Bi})是趋于000的;
.
严格证明也简单, 要证∀ϵ>0,∃N,∀n>N,∣Bi−0∣<ϵ\forall \epsilon > 0, \exist N, \forall n > N, |Bi - 0| < \epsilon∀ϵ>0,∃N,∀n>N,∣Bi−0∣<ϵ, 而∣Bi−0∣=∣L−Ai∣=∣Ai−L∣|B_i - 0| = |L - A_i| = |A_i - L|∣Bi−0∣=∣L−Ai∣=∣Ai−L∣, 根据AiA_iAi的定义 他就是∣Ai−L∣<ϵ|A_i - L| < \epsilon∣Ai−L∣<ϵ;
@DELI;
#数列发散的分类#;
记L=limf(x)L = lim f(x)L=limf(x) (相当于宏定义), 如果发散 (即极限不存在), 分为:
1:
(无穷) L=∞L = \inftyL=∞, 比如{An} = n
数列 是发散的 极限是无穷大;
2:
(震荡) LLL一直在[L,R][L, R][L,R]变化, 比如[-1,0,2, -1,0,2, -1,0,2, ...]
一直在[-1, 2]
之间变化;
@DELI;
若数列{xn}\{x_n\}{xn}是收敛的, 记limxn=L\lim x_n = Llimxn=L, 则其有如下性质:
唯一性: 其极限值LLL是唯一的;
有界性: 存在M∈RM \in \mathbb RM∈R, 使得∀n∈N,∣xn∣≤M\forall n \in \mathbb N, |x_n| \leq M∀n∈N,∣xn∣≤M;
保号性: 若L>0L > 0L>0, 则∃N∈N,∀n>N,xn>0\exists N \in \mathbb N, \forall n > N, x_n > 0∃N∈N,∀n>N,xn>0; (反之亦然)
保序性: 另一数列{yn}\{y_n\}{yn}也收敛 其极限记作MMM; 若L<ML < ML<M, 则∃N∈N,∀n∈N,xn<yn\exists N \in \mathbb N, \forall n \in N, x_n < y_n∃N∈N,∀n∈N,xn<yn;
子数列也收敛于同一极限值: {xn}\{x_n\}{xn}的任一 子数列, 也收敛 且极限也为LLL; (但反之不然, 比如[0,1,0,1,0,1,...]
不是收敛的, 但其子数列[0,0,0...]
是收敛的)
收敛函数
定义
前提: x0∈R‾x_0 \in \overline{ \mathbb R}x0∈R, limx→x0f(x)\lim_{x \to x_0} f(x)limx→x0f(x)等于某个实数;
结论: 函数f(x)f(x)f(x)在x0x_0x0处 为收敛函数;
相关术语
#无穷小函数#
前提: 函数f(x)f(x)f(x)在a∈R‾a \in \overline{ \mathbb R}a∈R(拓展实数域)处收敛, 且极限为000;
结论: 函数f(x)f(x)f(x)在aaa处 为无穷小函数;
@DELI;
#收敛函数的差分函数#
前提: 收敛函数f(x)f(x)f(x)在a∈R‾a \in \overline{ \mathbb R}a∈R处的极限为LLL, 令函数g(x):L−f(x),∀x∈Dfg(x): L - f(x), \forall x \in D_fg(x):L−f(x),∀x∈Df (也可以是f(x)−Lf(x) - Lf(x)−L);
结论: 函数g(x)g(x)g(x)称为 f(x)f(x)f(x)的差分函数;
.
即满足f(x)+g(x)=L,∀x∈(Df=Dg)f(x) + g(x) = L, \forall x \in (D_f=D_g)f(x)+g(x)=L,∀x∈(Df=Dg);
@DELI;
单侧极限
以某点的左极限为例 (±∞\pm \infty±∞的单侧极限也类似), 只需对上述标准极限的定义 稍作修改:
.
将(fff在aaa的某一去心邻域有定义), 改为(fff在aaa的某一去心左邻域有定义);
.
将(0<∣x−a∣<δ0 < |x - a| < \delta0<∣x−a∣<δ), 改为(0<a−x<δ0 < a - x < \delta0<a−x<δ);
单侧极限 和 上述标准极限 一样, 也存在没有极限的情况, 即fff在{aaa处/ ∞\infty∞} 没有左极限;
@DELIMITER
极限点
设集合SSS, 对于一点aaa (不一定在SSS里), 如果SSS里的点 可以任意接近于aaa, 则称aaa为SSS的极限点;
.
比如, 333是RRR的极限点 但不是ZZZ的极限点; 555是 集合S/{5}S / \{5\}S/{5} 的极限点;
aaa为DfD_fDf的极限点 ⟺ \iff⟺ DfD_fDf包含aaa的某一去心半邻域 (fff在aaa的某一去心半邻域有定义);
.
333 是 {x∈R∣x<3}\{ x \in R | x < 3 \}{x∈R∣x<3}的极限点, 即333的左邻域;
错误汇总
#函数收敛于aaa点 ⟹ \implies⟹ 函数在某一U˚(a)\mathring U(a)U˚(a)有定义#
@DELI;
limx→x0f(x)=A\lim_{x \to x_0} f(x) = Alimx→x0f(x)=A, 通常会理解为: 当x趋近x0x_0x0时, f(x)f(x)f(x)趋近与A;
.
这样说法没有错, 但给你一种印象 即x是单调的 (即从x0x_0x0的一侧 无限的去逼近x0x_0x0) 这在形象化感觉上 确实是这样;
.
可是, 极限的定义里 并没有单调逼近这个概念; 比如确定了ϵ\epsilonϵ后, 需要找到一个δ\deltaδ, 让所有的0<∣x−x0∣<δ0 < |x - x_0| < \delta0<∣x−x0∣<δ, 去满足∣f(x)−A∣<ϵ|f(x) - A| < \epsilon∣f(x)−A∣<ϵ;
.
.
这里对xxx的限制, 也就是Df∩U˚(x0,δ)D_f \cap \mathring U(x_0,\delta)Df∩U˚(x0,δ) 他是个集合, 也就是对x的取值范围限制 是个集合, 并不是说x必须是单调的去逼近x0x_0x0,这种理解是不恰当的;
.
因此, 对x的限制 是个实数集合 记作XXX; 通常我们不需要考虑DfD_fDf, 即X={x∣x∈(x0−δ,x0+δ)∧x≠x0}X = \{ x | x \in (x_0 - \delta, x_0 + \delta) \land x \neq x_0 \}X={x∣x∈(x0−δ,x0+δ)∧x=x0};
.
理解这点 尤其对复合函数非常重要; 由于XXX就是一个实数集合, 我们可以将xxx替换成一个函数g(u)g(u)g(u) (因为函数值 也是实数);
.
.
比如, 对于g(u)g(u)g(u)函数, 你总可以找到一个区间III, 使得∀u∈I,g(u)∈X\forall u \in I,g(u) \in X∀u∈I,g(u)∈X (其中XXX, 就是上面的那个实数集合XXX); (注意, 在III区间里 所有的g(u)g(u)g(u)值 都必须属于XXX集合里);
.
因此, 此时将xxx替换为g(u)g(u)g(u), 原来的0<∣x−x0∣<δ,∣f(x)−A∣<ϵ0 < |x - x_0| < \delta, |f(x) - A| < \epsilon0<∣x−x0∣<δ,∣f(x)−A∣<ϵ, 等价于现在的: ∀u∈I,g(u)∈U˚(x0,δ)\forall u \in I,g(u) \in \mathring U(x_0, \delta)∀u∈I,g(u)∈U˚(x0,δ);
.
.
进一步说, ∀ϵ,∃δ,∃I,[(∀u∈I) ⟹ (0<∣g(u)−x0∣<δ) ⟺ (∣f(g(u))−A∣<ϵ)]\forall \epsilon, \exist \delta, \exist I, [(\forall u \in I) \implies (0 < |g(u) - x_0| < \delta) \iff (|f(g(u)) - A| < \epsilon)]∀ϵ,∃δ,∃I,[(∀u∈I)⟹(0<∣g(u)−x0∣<δ)⟺(∣f(g(u))−A∣<ϵ)];
.
.
.
由于此时xxx已经被另一个函数ggg给替代了, 所以之前对x的限制δ\deltaδ可以省略掉, 即∀ϵ,∃I,[(∀u∈I) ⟹ (∣f(g(u))−A∣<ϵ)]\forall \epsilon, \exist I, [(\forall u \in I) \implies (|f(g(u)) - A| < \epsilon)]∀ϵ,∃I,[(∀u∈I)⟹(∣f(g(u))−A∣<ϵ)];
@DELIMITER
δ\deltaδ是: 0<∣x−x0∣<δ0 < |x - x_0| < \delta0<∣x−x0∣<δ, 而ϵ\epsilonϵ是: ∣f(x)−A∣<ϵ|f(x) - A| < \epsilon∣f(x)−A∣<ϵ;
.
别写成 0<∣f(x)−A∣<ϵ0 < |f(x) - A| < \epsilon0<∣f(x)−A∣<ϵ, f(x)f(x)f(x)是可以等于AAA的, 而xxx确实是不可以等于x0x_0x0;
@DELIMITER
先ϵ\epsilonϵ 后δ\deltaδ, 反过来就错了;
即先限制住yyy函数值的范围(L,R)(L, R)(L,R), 然后使得x0x_0x0的某个去心邻域的函数值 都位于(L,R)(L,R)(L,R)这个范围里;
.
基本上, 你让ϵ\epsilonϵ越来越小, 对应的δ\deltaδ也会越来越小; (也有特殊情况, 比如y=3y=3y=3, 函数值都相同, 那么你δ\deltaδ选多少都可以)
但反过来不可以的, 你先去限制住xxx自变量的范围(L,R)(L,R)(L,R), 虽然他的范围越来越小, 但是 你让他对应的ϵ\epsilonϵ保持不变, 一定是满足的; (因为, 比如ϵ0\epsilon_0ϵ0可以覆盖住所有x∈(L,R)x \in (L,R)x∈(L,R)对应的函数值, 那么随着(L,R)(L, R)(L,R)的范围越来越小, 相同的ϵ0\epsilon_0ϵ0 (变大更好) 也一定可以覆盖住新的变小了的x∈(<L,<R)x\in (<L,<R)x∈(<L,<R)的函数值;
.
比如, 在x0x_0x0的左侧 是一个y=0y=0y=0的直线, 右侧是y=1y=1y=1的直线, 那么你直接选择ϵ=100\epsilon = 100ϵ=100, 不管δ\deltaδ多小多大, 这个100100100总是满足的; 但是x0x_0x0并不是极限;
.
因此, 这无法体现出, ϵ,δ\epsilon, \deltaϵ,δ两者同时变小的极限, 不可以反过来;
性质
#收敛,连续,可导#;
函数在x0x_0x0处收敛 ⟹ \implies⟹ 函数在x0x_0x0的某去心邻域是有定义的;
函数在x0x_0x0处{连续/可导} ⟹ \implies⟹ 函数在x0x_0x0的某邻域是有定义的;
在x0x_0x0可导 ⟹ \implies⟹ 在该点连续 ⟹ \implies⟹ 在该点收敛;
.
以上的逆命题是错误的, 简单证明下:
.
在某点收敛 ̸ ⟹ \not \implies⟹ 该点连续: 该点为可去间断点; 其实根据连续的定义可知, [(该点收敛)&&(该点不是可去间断点)]<->[该点连续];
.
在某点连续 ̸ ⟹ \not \implies⟹ 该点可导: 比如x1/3x^{1/3}x1/3在000处 连续但是不可导;
在x0x_0x0{收敛/连续/可导} ̸ ⟹ \not \implies⟹ 在(x0,x0+δ)(x_0, x_0 + \delta)(x0,x0+δ)区间(即左/右邻域)为收敛;
.
令fff为拓展狄利克雷函数-2 (LINK: (https://editor.csdn.net/md/?not_checkout=1&articleId=131342798)-(@LOC_0)
), 在000处{收敛,连续,可导} 但在任意≠0\neq 0=0处 均不收敛;
.
在{左/右}邻域 收敛都做不到, {连续/可导}就更不可能了;
@DELI;
#函数fff在a∈R‾a\in \overline{R}a∈R处收敛, 则其差分函数 在aaa处的极限为000#
证明类似于: LINK: @LOC_4
;
@DELI;
某点极限里的δ>0\delta > 0δ>0, 想象成是一个很小的数;
无穷处极限里的δ>0\delta > 0δ>0, 想象成是一个很大的数; (这和某点处极限里的δ\deltaδ是不同的)
@DELIMITER
对于limx→x0f(x)\lim_{x \to x_0} f(x)limx→x0f(x), 你必须要保证: 存在x0x_0x0的去心邻域 使得f(x)f(x)f(x)有意义;
.
比如f(x)=g/hf(x) = g / hf(x)=g/h, 那么必须要保证: 存在x0x_0x0的去心邻域 使得h(x)≠0h(x) \neq 0h(x)=0; 否则除0错误了就;
对于ϵ0\epsilon_0ϵ0来说, 假如$\d
@DELIMITER
(在aaa处有极限 且极限为LLL) ⟺ \iff⟺ (在aaa处 同时有{左,右}极限, 且均为LLL);
@DELIMITER
设fff在x0x_0x0的极限为AAA, 函数极限的性质:
.
唯一性: 若存在极限, 则极限值唯一;
.
局部有界性: $\exist \delta > 0, \exist M > 0, [ (0 < |x - x_0| < \delta) \Rightarrow (|f(x)| < M)] ;‘.‘∗局部保号性∗:(以;
`.` *局部保号性*: (以;‘.‘∗局部保号性∗:(以A>0$为例, <0<0<0也类似), [(A>0)⇒(∃δ>0)[(0<∣x−x0∣<δ)⇒(f(x)>0)]][(A > 0) \Rightarrow (\exist \delta > 0)[(0 < |x - x_0| < \delta) \Rightarrow (f(x) > 0)]][(A>0)⇒(∃δ>0)[(0<∣x−x0∣<δ)⇒(f(x)>0)]];
.
.
即, 如果A>0A>0A>0, 则存在x0x_0x0某个去心邻域, 他们的函数值均>0>0>0;
.
.
反之亦然, 即如果在某个去心邻域里均>0>0>0, 且在x0x_0x0有极限, 则极限值也>0>0>0;
@DELIMITER
自变量为一个数列;
设fff在x0x_0x0的极限为AAA;
若{xn}\{x_n\}{xn}数列的极限为x0x_0x0, 且xn∈Df∧xn≠x0x_n \in D_f \land x_n \neq x_0xn∈Df∧xn=x0, 则对应的{f(xn)}\{f( x_n)\}{f(xn)}函数值数列 也收敛于LLL (即 limn→∞f(xn)=L\lim_{n \to \infty} f(x_n) = Llimn→∞f(xn)=L);
假如把xn≠x0x_n \neq x_0xn=x0去掉 就不对了; 虽然已经保证了xn∈Dfx_n \in D_fxn∈Df, 但是, 假如x0∈Dfx_0 \in D_fx0∈Df, 当xnx_nxn里有无数个x0x_0x0, 而此时f(x0)≠Af(x_0) \neq Af(x0)=A, 那么, 不管你NNN取再大, 对于n>Nn > Nn>N 总存在xn=x0x_n = x_0xn=x0, 而f(x0)≠Af(x_0) \neq Af(x0)=A; 因此, 他的极限是不存在的;
因此, 如果要把xn≠x0x_n \neq x_0xn=x0给去掉, 此时需要保证: 若x0∈Df∧f(x0)≠Ax_0 \in D_f \land f(x_0) \neq Ax0∈Df∧f(x0)=A, 则{xn}\{ x_n\}{xn}中x0x_0x0的个数 是有限个; (仔细理解这里的这个若的逻辑含义, 即如果x0∉Df∨f(x0)=Ax_0 \notin D_f \lor f(x_0) = Ax0∈/Df∨f(x0)=A, 则{xn}\{x_n\}{xn}里 有{有限个/无穷个}x0x_0x0都可以, 无所谓);
@DELIMITER
多从几何角度去想象∣f(x)−L∣<ϵ|f(x) - L| < \epsilon∣f(x)−L∣<ϵ的含义;
比如, 证明, 当L≠0L\neq 0L=0时, 存在x0x_0x0的某个去心邻域, 使得∣f(x)∣<∣L/2∣|f(x)| < |L/2|∣f(x)∣<∣L/2∣; (因为在x0x_0x0的某个去心邻域里, f(x),Lf(x), Lf(x),L是同号的, 我们分开讨论);
.
考虑极限值L>0L>0L>0的情况, 那么在x0x_0x0的某个去心邻域里, f(x)>0f(x) > 0f(x)>0, 因此, 你从几何的角度看这个式子, y=Ly = Ly=L这个直线的下侧 有个y1=L/2y_1 = L/2y1=L/2直线, 上侧有个y2=L+L/2y_2 = L+L/2y2=L+L/2直线, 那么f(x)f(x)f(x)的值 就介于(y1,y2)(y_1, y_2)(y1,y2)之间 (不可以包含边界);
.
.
因此, 你自然得到: f(x)>L/2f(x) > L/2f(x)>L/2的结论; (当然还有f(x)<L+L/2f(x) < L+L/2f(x)<L+L/2);
.
再考虑L<0L<0L<0的情况, 得到f(x)<L/2f(x) < L/2f(x)<L/2的结论, 因为他俩都是负数, 因此等价于−f(x)>−L/2-f(x) > -L/2−f(x)>−L/2 (乘以−1-1−1后, 两侧都是正号了);
.
结合L>0L>0L>0和L<0L<0L<0的情况, 得到∣f(x)∣>∣L/2∣|f(x)| > |L/2|∣f(x)∣>∣L/2∣的结论;
-{ 处理负数情况的小技巧;
其实不用像上面一样, 对负数域情况做那么详细的分析, 然后再两侧同乘*-1*, 把他变成正号, 这太麻烦了;
遇到负数的情况, 你把他翻转过来 (即加一个绝对值号∣∣||∣∣), 他就到正数域了, 之所以可以翻转 是因为在极限问题里, 他是不分正负号的, 极限关注的是距离 即∣∣||∣∣绝对值, 因此正负号在极限里 是同等对待的;
.
因此, 你先分析正数域的情况, 比如, 这里你在正数域得到了f(x)>L/2f(x) > L/2f(x)>L/2的情况, 那么同样是这样式子, 到了负数域 我们知道f(x),L/2f(x), L/2f(x),L/2他俩就都变成负号了; 因此, 你需要对每个负号的项, 添加绝对值; 即∣f(x)∣>∣L/2∣|f(x)| > |L/2|∣f(x)∣>∣L/2∣;
-}
但要注意, 这里是有L≠0L\neq 0L=0的前提的!
推广: 对于L≠0L\neq 0L=0, 一定存在x0x_0x0的某个去心邻域, 使得: ∣f(x)∣>∣L∣/k,k∈[2,3,4,...]|f(x)| > |L|/k, \quad k \in [2,3,4,...]∣f(x)∣>∣L∣/k,k∈[2,3,4,...] 和 ∣f(x)∣<∣L∣∗k,k∈[2,3,4,...]|f(x)| < |L|*k, \quad k \in [2,3,4,...]∣f(x)∣<∣L∣∗k,k∈[2,3,4,...];
–
对于L∈RL \in RL∈R的情况, 一定存在x0x_0x0的某个去心邻域, 使得: D<∣f(x)∣<U,∀D<∣L∣,U>∣L∣D < |f(x)| < U, \quad \forall D< |L|, U> |L|D<∣f(x)∣<U,∀D<∣L∣,U>∣L∣;
.
同样从几何角度容易理解; 只要D,U≠∣L∣D, U \neq |L|D,U=∣L∣, 那么一定存在去心邻域, 函数值都位于他俩之间;