作者:低调
作者宣言:写好每一篇博客
前言
时间复杂度是数据结构最开始学的一章,我相信大部分人和我一样,刚开始学,或者已经学完这一章,都还不理解这个是什么意思,怎么计算时间复杂度,接下来,我将为大家进行详细的介绍,看看我能不能把你们讲懂:
以下是本篇文章正文内容,下面案例可供参考
一、什么是时间复杂度?
我们通常说时间复杂度是建立在算法效率上的,所以也叫算法的时间复杂度。
什么是算法效率?
算法效率分析的目的是看算法实际是否可行,并在同一个问题存在多个算法时,可进行时间和空间性能上的比较,以便从中挑选出较优的算法
算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间(由于现在计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度,此文也就不在讲解空间复杂度了)
1.1时间复杂度的概念
注:在计算机科学中,算法的时间复杂度是一个函数,需要把程序放到计算机上运行才能得出结果,很显然这样是非常麻烦的。
所以我们才有了时间复杂度这个分析方式,一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
1.2复杂度计算在算法的意义
虽然我们现在写的程序很快运行出来了,但在今后工作中,我们会面临几十万行代码,这个时候就体现到算法效率的意义,和计算时间复杂度的重要性了。在以后面试过程中,也需要掌握怎么计算,才能顺利通过面试。
1.3如何计算常见算法的时间复杂度?
大O的渐进表示法
我们先来看一个简单的代码:
// 请计算一下Func1基本操作执行了多少次?
void Func1(int N) {
int count = 0;
for (int i = 0; i < N ; ++ i)//执行N次
{
for (int j = 0; j < N ; ++ j)//执行N次,并且这个for在另一个for内部
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k)//执行2N次
{
++count;
}
int M = 10;
while (M--)//执行十次;
{
++count;
}
printf("%d\n", count);
}
Func1 执行的基本操作次数:F(N)=N×N+2*N+10
N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010
*实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的