第二课丨学会区分iloc和loc切割数据☀

本文详细介绍了Pandas库中的iloc和loc函数,用于根据索引选取数据。iloc基于位置选择,而loc基于标签选择。通过示例解释了如何使用这两个函数选取DataFrame中的特定行和列,并展示了在波士顿房价数据集上的应用。掌握这两个函数对于高效处理数据至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

iloc函数介绍🔥

iloc函数是pandas库中的一个函数,用于根据行列索引选取数据。它的语法是df.iloc[row_index, column_index],其中df是数据框,row_index和column_index分别是行索引和列索引。行索引和列索引可以是整数、切片、布尔数组或者整数数组。 📌

使用iloc函数可以方便地选取数据框中的某些行或列,比如选取前5行和前3列的数据可以写成df.iloc[:5, :3]。此外,iloc函数还支持负数索引,表示从后往前数的位置,比如选取倒数第3行和倒数第2列的数据可以写成df.iloc[-3, -2]。📌

下面将举例iloc函数的应用。

例如:创建一个学生姓名,性别,出生年份,生源地的dataframe对象,首先创建一个字典对象,然后将字典传入给DataFrame()构建函数。

from pandas import Series,DataFrame
import pandas as pd
import numpy as np
data={
    'name':['刘一','周二','马三','王四','陈五','晓琪'],
    'sex':['男','女','男','男','女','女'],
    'year':['2000','2001','2002','2003','2004','2005'],
    'city':['武汉','云南','贵州','四川','重庆','上海']
}
df = DataFrame(data)
df

输出结果为:

  1. df.iloc[a,b],其中df是DataFrame数据结构的数据,a是行索引(如0,1,2,3,...),b是列索引(如name,sex,year,city)。

例如输入df.iloc[1,2],则结果就是:'2001'

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿生态化小勋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值