数仓主题域划分

数仓主题域划分

一、导读:

在数据仓库建设中,对数据的使用,业务与数据团队存在着不同的痛点:

业务团队:关注如何更快速,更准确,更便捷地获取想要的数据用来做各种决策和分析(例如:分析各机构的操作行为,用来标准化操作)

数据团队:关注如何更标准、更安全、更高效的管理数据(例如:数据的权限隔离等)

所以在数仓建设中,为了解决这一痛点,就有了主题域与数据域的划分,并且这两点并不冲突:

数据域是在业务系统调研完毕,从业务视角就可以划分。

****主题域:是从不同业务系统出发把数据域重新划分为不同的主题域,保证数据易理解,指标口径统一。

二、主题与****主题划分

2.1 主题域的划分

1.定义: 主题域是紧密相关的数据主题的集合,根据业务分析需求进行抽象和归类。

2.划分方法:

按业务过程划分: 一个核心业务过程对应一个主题域(例如:操作、交易、物流轨迹…)。

按业务部门划分: 一个主要业务部门对应一个主题域(例如:运输、业务运营、品控…)。

按业务系统划分: 一个核心业务系统对应一个主题域(例如:温控系统、ERP系统…)。

2.2 主题的划分

“主题”在数据仓库中是一个核心的、基础性的设计概念,它直接决定了数据仓库的结构、数据的组织方式以及最终用户理解和访问数据的效率。理解“主题”是理解整个数据仓库架构的关键。

1. 核心定义:

从业务分析角度出发,划分出的核心业务领域或关注焦点。(例如:时效、运单、订单、库存)

2. 设计根基:

业务导向:按业务需求划分,不是按技术或源系统结构划分。

集成核心:一个主题会整合所有与该业务领域相关的、来自不同源系统的数据。

分析导向:目的就是让用户能在一个地方找到分析某个业务问题所需的所有数据。

****3. 关键作用:

指导建模: 是设计星型/雪花模型(事实表+维度表)的顶层框架。

组织数据: 通常对应物理存储结构(如Schema/数据库)。

提升效率: 让业务用户能快速定位和理解数据,支持分析。

一句话总结:

主题 = 业务领域视角 + 数据集成单元 + 分析效率核心 ((例如:时效、运单、订单、库存)

三、主题域数据域建设

任何技术方案的最终目的是服务业务,通过数据推动业务发展,也就是数据驱动。所以主题域和数据域的建设也必然是建立在这个基础之上的。

一句话总结就是:用业务语言建模型,用模型结果反哺业务决策

3.1 主题域建设

主题域:从业务视角出发对数据进行分类,汇总企业的核心业务(如运输、操作、仓储,温控等)

3.1.1 业务开始-从业务中来

1、业务大图 =“货”的端到端旅程

2、主题域=旅程里“高频 KPI、高价值、高复用”的 6 个节点

用业务常用语验证:

• 订单域(下单、改单…)

• 运单域(揽收到签收全过程)

• 运输域(车辆、班线、车辆、在途温度…)

3、业务项负责人

运单域:技术支持A(负责全国运单相关事项)

运输域:技术支持B(负责全国运输相关事项)

3.1.2 结合业务划分主题域

这样划分主题域与数据域与层级有以下几点好处:

****1. 架构清晰,来源明确:

表头体现层级与主题: 使用 dwd_waybill, dws_order, ads_waybill_dim 等命名清晰区分数据层级(DWD/DWS/ADS)和所属业务主题域。

血缘清晰: 数据来源直接对应具体业务系统,血缘关系一目了然。

2. 保障业务域内数据统一性:

源头一致: 同一主题域数据源于单一业务系统,天然继承其核心业务规则、主数据定义和逻辑。

消除冲突: 确保主题域内部(如所有运单相关表)数据口径、维度定义高度一致。

3. 奠定指标体系基础 & 模型高效复用:

统一口径: 主题域内统一的数据为构建跨层级的、一致的指标体系(如订单转化率、运单时效)提供可靠基石。

一次开发,多次复用: 设计良好的主题域模型(尤其是DWD宽表明细层)可被不同汇总层(DWS)、应用层(ADS)及报表多次引用,大幅提升开发效率。

4. 分层权责明确,管理高效:

层级功能清晰: DWD(宽表明细)、DWS(汇总)、ADS(应用/服务)各层功能定位明确,逻辑划分统一。

治理责任绑定: 主题域的数据治理责任(质量、安全、元数据)自然归属对应的源头业务系统负责人,权责清晰,便于管理落地。

5. 聚焦实施,敏捷交付:

系统级聚焦: 模型设计与开发只需深入理解单一业务系统,复杂度低。

分步建设: 可按业务系统优先级独立规划、建设和交付各个主题域,降低风险,快速见效。

3.1.3 业务闭环-到业务中去

1、选 1 个业务痛点做 POC

痛点:上海区域签收及时率环比下降30%

2、用“主题域-指标-行动”分析

• 主题域:时效+运输+操作

时效:时效承诺达成率

运输域:干线到发车准时率

操作域:中转经停时长、错发率

反查明细:

南京中转班车平均经停留时长>2h 的运单占比 18%(历史 8.5%)

班线运输显示,集中这个时段的干线发车率降低13%

• 行动:

优化操作环节,并增加凌晨12–5点的操作人员由3组提至5组

•验证数仓价值

如果以上闭环跑通,证明主题域/数据域切得准;

跑不通就回到主题域、数据域补全业务过程继续迭代。

一张图总结下

“揽-干-派” 任一环节出问题 → 通过主题域快速定位 → 数据域提供原子事件 → 业务动作 24h 内闭环。

真正做到:从物流业务现场来,到物流运营优化去。

<think>好的,我现在需要回答用户关于数据仓库中主题与主题域划分的作用和意义的问题。首先,我要明确主题和主题域的定义,以及它们在数据仓库中的角色。根据引用[3],主题域是按照特定业务领域或主题对据进行分类和组织的方式,每个主题域反映一个特定的业务方面,帮助用户高效分析和查询据。而引用[4]提到,主题域通常用于DIM、DWD和DWS表,而ADS表可能跨多个主题域。这说明主题域据模型中的层次结构中有明确的位置。接下来,用户想知道划分主题和主题域的作用和意义。引用[1]指出主题域是联系紧密的据主题集合,需由用户和设计人员共同确定,这说明划分主题域需要业务和技术的结合。引用[2]中的例子展示了不同主题域如销售、财务、供应链,每个下面有更细分的主题,这有助于结构化管理据。作用方面,可能包括提升据组织清晰度、增强可维护性、支持高效查询和分析,以及促进团队协作。引用[4]中的实例说明大厂按产品线划分主题域,而中小公司可能按业务系统划分,这说明划分方法需适应企业规模和业务需求。另外,需要区分主题和主题域的关系。主题可能更细粒度,属于某个主题域下的具体业务点,比如订单主题属于销售主题域。引用[2]的目录结构展示了这种层级关系。意义方面,主题域划分能帮助企业在复杂据中建立逻辑结构,支持快速决策。引用[3]提到主题域与关键业务过程相关,这直接关联到企业的分析需求。最后,引用[4]中的实践经验指出,划分不当可能导致据冗余或扯皮,正确的划分能提高复用率和模型稳定性。因此,划分策略需要根据实际情况调整,如按业务系统或业务过程划分。总结时,需要将作用归纳为几个点,如提升据管理效率、支撑业务分析等,并强调其对企业据治理的重要性。同时,生成相关问题需要考虑用户可能想深入的主题,比如划分方法、实践案例或挑战。</think>### 数据仓库中主题与主题域划分的作用和意义 #### 1. **核心概念定义** - **主题(Subject)**:指围绕特定业务过程或分析对象(如“订单”“客户”)组织的据集合,反映某一业务维度的信息,例如销售主题包含订单、客户、产品等据[^3]。 - **主题域(Subject Area)**:是多个紧密关联主题的集合,按业务关注点划分(如“销售主题域”包含订单、客户、产品主题),用于从更高视角组织据[^1][^3]。 #### 2. **划分作用** 1. **提升据组织清晰度** 通过主题域划分,将分散的据按业务逻辑归类,例如将财务(总账、应收)和供应链(库存、物流)分开管理,避免据冗余和混乱[^2][^3]。 2. **支持高效分析与决策** 用户可直接在特定主题域(如“售后主题域”)中快速定位据,减少跨域查询复杂度,提升分析效率[^3]。 3. **促进团队协作与据安全** - 按产品线或业务系统划分主题域(如大厂“垂域隔离”),便于独立团队负责特定域,减少耦合[^4]。 - 敏感据(如财务)可限制在独立主题域内,增强安全性[^4]。 4. **适应业务扩展与模型演进** 主题域划分支持模块化设计,新增业务(如IOT设备据)可扩展为新主题域,无需重构整体模型[^4]。 #### 3. **实践意义** - **降低建设复杂度**:通过分层(一级主题域按业务系统,二级按业务过程)简化据整合,例如将金蝶系统据独立为“金蝶主题域”[^4]。 - **提高复用性与一致性**:公共主题域(如跨系统的客户维度表)统一管理通用据,避免重复加工[^4]。 - **避免据孤岛**:主题域划分需平衡业务独立性与全局关联性,例如中小公司按业务系统划分后,通过DIM表整合关键维度[^4]。 #### 4. **划分原则** - **业务驱动**:与业务部门共同定义,确保主题域反映实际分析需求(如销售域需覆盖订单转化率分析)[^1][^3]。 - **灵活性**:根据企业规模调整策略,大厂可按产品线划分,中小企业可按系统或业务过程划分[^4]。 --- ### 示例:企业级主题域划分 ```plaintext 企业数据仓库 ├── 销售主题域(业务视角) │ ├── 订单主题(订单量、转化率) │ └── 客户主题(画像、生命周期) └── 供应链主题域(过程视角) ├── 库存主题(周转率、预警) └── 物流主题(时效、成本) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值