线性代数 学习 笔记

10.方阵的行列式

要计算行列式的前提为矩阵A为方阵。

性质:A为n阶的方阵

11.伴随矩阵

设 A 是一个 n×n 的方阵,其元素为 aij。伴随矩阵 adj(A)或A* 是一个 n×n的矩阵,其第 i 行第 j 列的元素是 A 的余子式 Mji 的代数余子式 Cji,即:

其中 Mji是 A 的第j 行第i 列元素的余子式,即去掉第 j 行和第 i 列后剩下的 (n−1)×(n−1) 矩阵的行列式。

简单理解:

1.先按行求出每个元素的代数余子式

2.将每行元素的代数余子式按列组成一个矩阵,该矩阵就是伴随矩阵。

例如:

求A的伴随矩阵A*

解:

按行求出每个元素的代数余子式:

然后将每行元素的代数余子式按列组成矩阵:

性质:

性质2:

12.逆矩阵

对于一个 n×n 的方阵 A,如果存在另一个 n×n的方阵 B,使得 AB=BA=E,其中 E 是 n×n 的单位矩阵,那么 B 称为 A 的逆矩阵,记作

逆矩阵的存在条件

一个矩阵 A 有逆矩阵的充分必要条件是 A 是可逆的,即 det (A)≠0。如果 det (A)=0,则 A 是奇异矩阵,没有逆矩阵。

性质:

1.n阶方阵A可逆的充要条件为

且当A可逆时,

13.初等变换

初等变换一般可以分为两种类型:行变换、列变换。

初等行变换:

交换两行:将矩阵的第 i 行和第 j 行交换位置

如:矩阵第二行和第三行交换

某一行乘以非零常数:将矩阵的第i 行乘以一个非零常数 k

如:第二行乘以非零整数k

某一行加上另一行的倍数:将矩阵的第 i行加上第 j 行的 k 倍

如:矩阵第一行乘以-4加到第二行

初等列变换

交换两列:将矩阵的第 i 列和第 j 列交换位置

某一列乘以非零常数:将矩阵的第 i 列乘以一个非零常数 k

某一列加上另一列的倍数:将矩阵的第 i 列加上第 j 列的 k 倍

14.矩阵的标准形

常见的矩阵标准形包括行阶梯形矩阵、简化行阶梯形矩阵等。

14.1 行阶梯形矩阵

行阶梯形矩阵是一种特殊的矩阵形式,具有以下特征:

非零行在零行之上:所有非零行都在零行之上。

主元:每一行的第一个非零元素(主元)在上一行主元的右边。

主元下方元素为零:每一行的主元下方元素都为零。

例如,以下矩阵是一个行阶梯形矩阵:

简单理解为:用折线表示,竖线只过一个数,横线可过多个数

下边的矩阵不是行阶梯形矩阵

14.2 简化行阶梯形矩阵

简化行阶梯形矩阵是行阶梯形矩阵的一种特殊形式,具有以下特征:

非零行在零行之上:所有非零行都在零行之上。

主元为 1:每一行的第一个非零元素(主元)为 1。

主元下方元素为零:每一行的主元下方元素都为零。

主元上方元素为零:每一行的主元上方元素都为零。

即:

1.是行阶梯形矩阵;2.非0行的首非0元是1;3.非0行的首非0元所在列的其它元素都是0红色折线表示矩阵为行阶梯形矩阵;蓝色圆圈表示首非0元是1;黄色竖线表示首非0元所在列的其它元

素都是0

向量

1.定义

向量可以用多种方式定义,以下是几种常见的定义:

几何定义:向量是一个有方向和大小的量,通常用箭头表示。向量的起点称为原点,终点称为向量

的端点。

代数定义:向量是一个有序的数组,通常表示为列向量或行向量。

例如,一个 n 维列向量可以表示为:

一个 n 维行向量可以表示为:

其中 v1,v2,…,vn是向量的分量。

行向量和列向量再本质上没有区别。

向量的表示

向量可以用多种方式表示,以下是几种常见的表示方法:

几何表示:在二维或三维空间中,向量通常用箭头表示,箭头的方向表示向量的方向,箭头的长度

表示向量的大小。

代数表示:向量可以用列向量或行向量表示,如上所述。

坐标表示:在二维或三维空间中,向量可以用坐标表示。例如,二维向量 v=(v1,v2) 表示

在 x轴和 y轴上的分量。

2. 向量的运算

向量有几种基本的运算,包括加法、数乘、点积和叉积。

向量加法

向量加法是将两个向量的对应分量相加,得到一个新的向量。例如,两个 n 维向量 u 和 v 的加法为:

向量数乘

向量数乘是将一个向量的每个分量乘以一个标量,得到一个新的向量。例如,一个 n 维向量 v 与标量 k 的数乘为:

向量点积

向量点积(内积)是将两个向量的对应分量相乘,然后将结果相加,得到一个标量。

例如,两个 n 维向量 u 和 v 的点积为:

3.矩阵的特征值和特征向量

定义

设 A 是一个 n×n 的方阵。如果存在一个非零列向量 v 和一个标量 λ,使得:

那么 λ 称为矩阵 A的特征值,v 称为对应于特征值 λ 的特征向量。

注:λ可以为0,而v不能为0,并且v是列向量。因为A是n维矩阵,如果v是行向量,则维数是1xn,不满足矩阵相乘。将定义中的等式移项,得到:

由于v是非零列向量,相当于求上述方程的非零解,由方程有非零解的充要条件是行列式为0的定理可知:

说明:

(A-λE):特征矩阵;|A-λE|:特征行列式或特征多项式;|A-λE|=0:特征方程。

结论:

1.λ是A的特征值,v是对应λ的一个特征向量,则cv也是λ的一个特征向量,c为不等于0的标量。

根据定义:

等式两边同乘以c

所以cv也是λ的一个特征向量。

练习:

1.假设有矩阵A

求A的特征值λ及对应λ的特征向量。

解:根据特征值定义可知:

1.计算行列式

所以λ1=λ2=2,λ3=-7

4.向量的模

定义

向量 v 的模记作 ||v||,计算公式为:

几何解释

在二维空间中,向量 v=(v1,v2)的模表示从原点到点 (v1,v2)的距离。在三维空间中,向量 v=(v1,v2,v3)的模表示从原点到点 (v1,v2,v3)的距离。

||v||=1,叫做单位向量的模。如:v=(1,0,0)

性质

1. 非负性:∥v∥≥0,并且 ∥v∥=0 当且仅当 v=0(零向量)。

2. 齐次性:对于任意标量 k,∥kv∥=∣k∣∥v∥。

3. 三角不等式:对于任意向量 u 和 v,∥u+v∥≤∥u∥+∥v∥。

5.向量的内积

定义

对于两个 n 维向量 a=(a1,a2,…,an) 和 b=(b1,b2,…,bn),它们的内积(点积)表示为 a⋅b,计算公式为:

几何解释

在几何上,内积也可以通过向量的模和它们之间的夹角来表示。具体来说,如果 θ 是向量 a 和 b 之间的夹角,那么内积可以表示为:

其中:

||a|| 和||b||分别是向量 a 和 b 的模(长度)。

cos (θ)是夹角 θ 的余弦值。

性质

1. 交换律:a⋅b=b⋅a

2. 分配律:a⋅(b+c)=a⋅b+a⋅c

3. 数乘结合律:(ka)⋅b=k(a⋅b)=a⋅(kb)(,其中 k 是标量。

4. 正定性:a⋅a≥0,并且 a⋅a=0 当且仅当 a=0。

结论:

向量内积的几何解释其实就是余弦相似度算法的公式,当cos (θ)=1时,表示两个向量重合;

当cos (θ)=0时,表示两个向量垂直。

如果使用两个向量分别近似表示两个文本或图像,两个向量的cos (θ)越接近1,表示这两个文本内容越相似,cos (θ)越接近0,表示这两个文本内容越不相似。

余弦相似度

向量的余弦公式是

其中a,b是向量,余弦也叫余弦函数,是三角函数的一种,且余弦定理亦称第二余弦定理,是关于三角形边角关系的重要定理之一。

ab:向量的内积。

|a| |b|:表示向量的模。

假设向量a:{x1,x2,x3,...,xn},向量b:{y1,y2,y3,...,yn}

所以:

一个向量空间中两个向量夹角间的余弦值作为衡量两个个体之间差异的大小,余弦值接近1,夹角趋于0,表明两个向量越相似,余弦值接近于0,夹角趋于90度,表明两个向量越不相似。

使用余弦相似度计算两段文本的相似度

思路:1、分词;2、列出所有词;3、分词计算词频;4、词频向量化;5、套用余弦函数计量两个句子的相似度。

假设:

句子A:这只皮靴号码大了。那只号码合适。

句子B:这只皮靴号码不小,那只更合适。

1、分词:

使用ansj分词对上面两个句子分词后,分别得到两个列表:

listA=[这, 只, 皮靴, 号码, 大, 了, 那, 只, 号码, 合适]

listB=[这, 只, 皮靴, 号码, 不, 小, 那, 只, 更, 合适]

2、列出所有词

将listA和listB放在一个set中,得到:

set=[号码, 合适, 那, 更, 了, 大, 皮靴, 这, 只, 不, 小]

3、分词计算词频

词频表示分词在分词列表中出现的次数,分别计算listA和listB中每个分词在列表中的词频freqMapA={这=1, 只=2, 皮靴=1, 号码=2, 大=1, 了=1, 那=1, 合适=1}

freqMapB={这=1, 只=2, 皮靴=1, 号码=1, 不=1, 小=1, 那=1, 更=1, 合适=1}

4、词频向量化

分别计算freqMapA和freqMapB在set中出现的次数,如果没有出现则为0,得到结果:

set= [号码, 合适, 那, 更, 了, 大, 皮靴, 这, 只, 不, 小]

freqListA=[2, 1, 1, 0, 1, 1, 1, 1, 2, 0, 0]

freqListB=[1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1]

5、套用余弦函数计算相似度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值