YOLOv8训练COCO128数据集

一、前期准备

打开conda prompt,输入: 

conda create -n yolov8 python=3.10

 下载YOLOv8官方源码:

https://github.com/Pertical/YOLOv8/tree/main?tab=readme-ov-filehttps://github.com/Pertical/YOLOv8/tree/main?tab=readme-ov-file接下来环境配置、依赖包安装、预训练权重下载以及验证环境等操作,我参考了下面这一篇博客:适合小白的超详细yolov8环境配置+实例运行教程

二、COCO128数据集

下载链接:COCO128数据集

在根目录下新建datasets文件夹,组成如下形式:

在"coco128"文件夹下新建coco128.yaml文件:

# coco128.yaml
# COCO128 dataset configuration file for YOLOv8
# Path: https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco128.yaml

# Dataset path (relative to YOLOv8 project root)
path: D:/YOLOv8-main/datasets/coco128  # 数据集根目录

# Train/val/test splits (images and labels)
train:  D:/YOLOv8-main/datasets/coco128/images/train2017  # 训练集图像路径(COCO128 默认全部用于训练)
val:  D:/YOLOv8-main/datasets/coco128/images/train2017   # 验证集路径(小数据集可直接复用训练集)
test:                    # 测试集路径(可选)

# Class names (80 classes, same as full COCO)
names:
  0: person
  1: bicycle
  2: car
  3: motorcycle
  4: airplane
  5: bus
  6: train
  7: truck
  8: boat
  9: traffic light
  10: fire hydrant
  11: stop sign
  12: parking meter
  13: bench
  14: bird
  15: cat
  16: dog
  17: horse
  18: sheep
  19: cow
  20: elephant
  21: bear
  22: zebra
  23: giraffe
  24: backpack
  25: umbrella
  26: handbag
  27: tie
  28: suitcase
  29: frisbee
  30: skis
  31: snowboard
  32: sports ball
  33: kite
  34: baseball bat
  35: baseball glove
  36: skateboard
  37: surfboard
  38: tennis racket
  39: bottle
  40: wine glass
  41: cup
  42: fork
  43: knife
  44: spoon
  45: bowl
  46: banana
  47: apple
  48: sandwich
  49: orange
  50: broccoli
  51: carrot
  52: hot dog
  53: pizza
  54: donut
  55: cake
  56: chair
  57: couch
  58: potted plant
  59: bed
  60: dining table
  61: toilet
  62: tv
  63: laptop
  64: mouse
  65: remote
  66: keyboard
  67: cell phone
  68: microwave
  69: oven
  70: toaster
  71: sink
  72: refrigerator
  73: book
  74: clock
  75: vase
  76: scissors
  77: teddy bear
  78: hair drier
  79: toothbrush

三、 训练模型

在terminal中输入下面的命令:

yolo detect train data=datasets/coco128/coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=4 lr0=0.01 resume=True

显示如下界面:

训练结果如下:

Validating runs\detect\train6\weights\best.pt...
Ultralytics 8.3.141  Python-3.10.16 torch-2.7.0+cpu CPU (Intel Xeon E5-2683 v3 2.00GHz)
YOLOv8n summary (fused): 72 layers, 3,151,904 parameters, 0 gradients, 8.7 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 
                   all        128        929      0.851      0.803      0.867      0.697
                person         61        254      0.972      0.686      0.871       0.67
               bicycle          3          6          1       0.54      0.809      0.503
                   car         12         46      0.839      0.478      0.566      0.317
            motorcycle          4          5      0.895          1      0.995      0.957
              airplane          5          6      0.958          1      0.995      0.929
                   bus          5          7          1      0.784      0.953       0.81
                 train          3          3      0.923          1      0.995       0.85
                 truck          5         12      0.919        0.5      0.597      0.469
                  boat          2          6      0.804        0.5      0.754      0.512
         traffic light          4         14      0.987      0.357      0.415      0.255
             stop sign          2          2       0.85          1      0.995      0.847
                 bench          5          9          1      0.867      0.984      0.778
                  bird          2         16      0.995          1      0.995      0.727
                   cat          4          4      0.919          1      0.995      0.915
                   dog          9          9      0.978          1      0.995      0.885
                 horse          1          2      0.862          1      0.995      0.946
              elephant          4         17      0.951      0.882       0.96        0.8
                  bear          1          1      0.785          1      0.995      0.995
                 zebra          2          4      0.914          1      0.995      0.995
               giraffe          4          9       0.97          1      0.995       0.89
              backpack          4          6      0.919      0.667      0.789      0.651
              umbrella          4         18          1       0.83      0.972      0.765
               handbag          9         19      0.829      0.474      0.588      0.399
                   tie          6          7      0.748      0.848      0.824       0.72
              suitcase          2          4       0.66          1      0.995      0.623
               frisbee          5          5      0.779        0.8      0.801      0.701
                  skis          1          1      0.815          1      0.995      0.796
             snowboard          2          7      0.332      0.857      0.774      0.559
           sports ball          6          6          1      0.547      0.672       0.38
                  kite          2         10          1      0.379      0.776      0.321
          baseball bat          4          4       0.69      0.571      0.825      0.455
        baseball glove          4          7      0.951      0.429      0.435       0.35
            skateboard          3          5      0.692      0.906      0.938      0.628
         tennis racket          5          7      0.814      0.631       0.67      0.462
                bottle          6         18          1      0.332      0.708      0.454
            wine glass          5         16      0.877      0.438      0.842      0.547
                   cup         10         36      0.921      0.651      0.861      0.622
                  fork          6          6      0.952      0.667      0.812      0.644
                 knife          7         16      0.737        0.7      0.734      0.446
                 spoon          5         22      0.656      0.591      0.657       0.45
                  bowl          9         28      0.862      0.821      0.881      0.729
                banana          1          1       0.63          1      0.995      0.895
              sandwich          2          2      0.659          1      0.995      0.995
                orange          1          4      0.898          1      0.995      0.679
              broccoli          4         11      0.608      0.364      0.534      0.382
                carrot          3         24      0.949      0.777      0.889      0.661
               hot dog          1          2      0.831          1      0.995      0.995
                 pizza          5          5      0.928          1      0.995      0.917
                 donut          2         14      0.655          1      0.906      0.818
                  cake          4          4      0.906          1      0.995      0.938
                 chair          9         35       0.87      0.571      0.825      0.611
                 couch          5          6          1      0.915      0.995      0.816
          potted plant          9         14      0.855      0.845      0.952      0.763
                   bed          3          3      0.891          1      0.995       0.94
          dining table         10         13      0.861          1      0.986      0.818
                toilet          2          2      0.821          1      0.995      0.847
                    tv          2          2      0.882          1      0.995      0.946
                laptop          2          3      0.847          1      0.995      0.897
                 mouse          2          2          1      0.864      0.995        0.5
                remote          5          8      0.952       0.75      0.765      0.659
            cell phone          5          8      0.874        0.5       0.55      0.422
             microwave          3          3      0.798          1      0.995      0.816
                  oven          5          5      0.696        0.6      0.551      0.506
                  sink          4          6      0.639          1      0.775      0.464
          refrigerator          5          5      0.874          1      0.995      0.933
                  book          6         29      0.737      0.387      0.657      0.441
                 clock          8          9       0.95      0.889      0.951      0.836
                  vase          2          2      0.804          1      0.995      0.895
              scissors          1          1      0.567          1      0.995      0.746
            teddy bear          6         21      0.779      0.839      0.928      0.723
            toothbrush          2          5      0.929          1      0.995      0.895
Speed: 2.1ms preprocess, 52.8ms inference, 0.0ms loss, 2.1ms postprocess per image
Results saved to runs\detect\train6
 Learn more at https://docs.ultralytics.com/modes/train

训练得到的各项指标:

 四、验证

输入下面的命令进行模型的验证,这里的models为训练的最好的那一组权重:

yolo detect val data=datasets/coco128/coco128.yaml model=runs/detect/train6/weights/best.pt batch=4

 结果如下:

                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 32/32 [00:07<00:00,  4.33it/s]
                   all        128        929      0.852      0.802      0.867      0.696
                person         61        254      0.972      0.685      0.872      0.672
               bicycle          3          6          1      0.536      0.809      0.503
                   car         12         46      0.841      0.478      0.566      0.317
            motorcycle          4          5      0.898          1      0.995      0.957
              airplane          5          6      0.958          1      0.995      0.929
                   bus          5          7          1      0.783      0.953       0.81
                 train          3          3      0.924          1      0.995       0.85
                 truck          5         12      0.919        0.5      0.597      0.469
                  boat          2          6      0.807        0.5      0.754      0.512
         traffic light          4         14      0.992      0.357      0.415      0.255
             stop sign          2          2      0.851          1      0.995      0.847
                 bench          5          9          1      0.869      0.984      0.774
                  bird          2         16      0.998          1      0.995      0.727
                   cat          4          4      0.919          1      0.995      0.915
                   dog          9          9      0.978          1      0.995      0.885
                 horse          1          2      0.862          1      0.995      0.946
              elephant          4         17      0.952      0.882      0.958      0.781
                  bear          1          1      0.786          1      0.995      0.995
                 zebra          2          4      0.915          1      0.995      0.995
               giraffe          4          9      0.971          1      0.995      0.868
              backpack          4          6       0.92      0.667      0.789      0.651
              umbrella          4         18          1      0.829      0.972      0.756
               handbag          9         19      0.839      0.474      0.596      0.403
                   tie          6          7      0.747      0.844      0.824       0.72
              suitcase          2          4      0.662          1      0.995      0.623
               frisbee          5          5      0.779        0.8      0.801      0.701
                  skis          1          1      0.817          1      0.995      0.796
             snowboard          2          7      0.333      0.857      0.774      0.559
           sports ball          6          6          1      0.546      0.672       0.38
                  kite          2         10          1       0.36      0.776      0.322
          baseball bat          4          4       0.69      0.569      0.808      0.438
        baseball glove          4          7      0.952      0.429      0.435       0.35
            skateboard          3          5      0.691      0.904      0.938      0.628
         tennis racket          5          7      0.814       0.63       0.67      0.462
                bottle          6         18          1      0.332      0.707      0.453
            wine glass          5         16      0.878      0.438      0.842      0.547
                   cup         10         36      0.921       0.65      0.861      0.622
                  fork          6          6      0.953      0.667      0.812      0.644
                 knife          7         16      0.735      0.694      0.734      0.446
                 spoon          5         22      0.658      0.591      0.657       0.45
                  bowl          9         28      0.863      0.821      0.881      0.729
                banana          1          1      0.632          1      0.995      0.895
              sandwich          2          2      0.661          1      0.995      0.995
                orange          1          4        0.9          1      0.995      0.679
              broccoli          4         11      0.609      0.364      0.534      0.382
                carrot          3         24      0.949      0.774      0.889      0.661
               hot dog          1          2      0.832          1      0.995      0.995
                 pizza          5          5      0.928          1      0.995      0.916
                 donut          2         14      0.655          1      0.906      0.818
                  cake          4          4      0.907          1      0.995      0.938
                 chair          9         35      0.899      0.571      0.824       0.61
                 couch          5          6          1      0.915      0.995      0.816
          potted plant          9         14      0.852      0.823      0.952      0.763
                   bed          3          3      0.892          1      0.995       0.94
          dining table         10         13      0.863          1      0.986      0.818
                toilet          2          2      0.822          1      0.995      0.847
                    tv          2          2      0.882          1      0.995      0.946
                laptop          2          3      0.847          1      0.995      0.897
                 mouse          2          2          1      0.861      0.995        0.5
                remote          5          8      0.953       0.75      0.765      0.659
            cell phone          5          8      0.875        0.5      0.549      0.422
             microwave          3          3      0.796          1      0.995      0.816
                  oven          5          5       0.65        0.6      0.552      0.492
                  sink          4          6       0.64          1      0.775      0.464
          refrigerator          5          5      0.872          1      0.995      0.933
                  book          6         29      0.736      0.385      0.657      0.441
                 clock          8          9       0.95      0.889      0.951      0.836
                  vase          2          2      0.805          1      0.995      0.895
              scissors          1          1      0.569          1      0.995      0.746
            teddy bear          6         21      0.778      0.837      0.928      0.723
            toothbrush          2          5      0.929          1      0.995      0.895
Speed: 1.3ms preprocess, 45.8ms inference, 0.0ms loss, 2.2ms postprocess per image
Results saved to runs\detect\val
 Learn more at https://docs.ultralytics.com/modes/val

预测单张图片:

yolo predict model=runs/detect/train6/weights/best.pt source=datasets/coco128/images/train2017/000000000009.jpg

 结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

先把态度摆正

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值