Jmeter的使用
1、添加线程组(线程数+准备时长+循环次数)
1.1、线程数:虚拟用户数,一个虚拟用户占用一个进程或线程(设置多少个虚拟用户=设置多少个线程)
1.2、准备时长(s):设置的虚拟用户数需要多长时间全部启动。eg:线程数为20,准备时长为10,则说明需要10秒钟启动20个进程。
1.3、循环次数:每个线程发送请求的次数。eg:线程数为20,循环次数为5,那么每个线程发送5次请求,总请求数为20*5=100
2.添加HTTP请求
3.设置QPS限制:控制给定的取样器发送请求的吞吐量
4、添加监视器-聚合报告、察看结果树
5、运行脚本
6、聚合报告解析(响应时间单位:毫秒)
1)Label:每个Jmeter的element都有一个Name属性,这里显示的就是Name属性的值
2)#Sample:表示你这次测试中一共发出了多少个请求,如果模拟10个用户,每个用户迭代10次,那么这里显示100
3)Average:平均响应时间-默认情况下是单个Request的平均响应时间当使用了Transaction Controller 时,也可以以Transaction为单位显示平均响应时间
4)Median:中位数,50%用户的响应时间
5)90%Line:90%用户响应时间
6)Min:最小响应时间
7)Max:最大响应时间
8)Error%:本次测试中出现错误的请求的数量/请求的总数
9)Throughput:吞吐量-默认情况下白石每秒的请求数
10)KB/sec:每秒从服务器端接收到的数据量
或者
分布式锁-redission
引入依赖:
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.13.6</version>
</dependency>
配置Redisson客户端:
@Configuration
public class RedissonConfig {
@Bean
public RedissonClient redissonClient(){
// 配置
Config config = new Config();
config.useSingleServer().setAddress("redis://192.168.150.101:6379")
.setPassword("123456");
// 创建RedissonClient对象
return Redisson.create(config);
}
}
如何使用Redission的分布式锁
@Resource
private RedissionClient redissonClient;
@Test
void testRedisson() throws Exception{
//获取锁(可重入),指定锁的名称
RLock lock = redissonClient.getLock("anyLock");
//尝试获取锁,参数分别是:获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位
boolean isLock = lock.tryLock(1,10,TimeUnit.SECONDS);
//判断获取锁成功
if(isLock){
try{
System.out.println("执行业务");
}finally{
//释放锁
lock.unlock();
}
}
}
破解FinalShell
本次激活支持Windows + mac 平台,同时支持所有所有版本的finallshell(eg: 4.3.11 、3.9.6 …)
使用python。
下载安装包,终端输入:pip3 install pycryptodome
直接执行以下代码即可:
from hashlib import md5, sha3_384
from Crypto.Hash import keccak
def md5_hash(msg):
return md5(msg.encode()).hexdigest()
def keccak384_hash(msg):
keccak_hash = keccak.new(digest_bits=384)
keccak_hash.update(msg.encode())
return keccak_hash.hexdigest()
def main():
code = input("输入机器码: ")
print("版本号 < 3.9.6 (旧版)")
try:
print("高级版: " + md5_hash("61305" + code + "8552")[8:24])
print("专业版: " + md5_hash("2356" + code + "13593")[8:24])
except Exception as e:
print(str(e))
print("版本号 >= 3.9.6 (新版)")
try:
print("高级版: " + keccak384_hash(code + "hSf(78cvVlS5E")[12:28])
print("专业版: " + keccak384_hash(code + "FF3Go(*Xvbb5s2")[12:28])
except Exception as e:
print(str(e))
if __name__ == "__main__":
main()
缓存工具类
- 方法1:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置TTL过期时间
- 方法2:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置逻辑过期时间,用于处理缓存击穿问题
- 方法3:根据指定的key查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题
- 方法4:根据指定的key查询缓存,并反序列化为指定类型,需要利用逻辑过期解决缓存击穿问题
@Slf4j
@Component
public class CacheClient {
private final StringRedisTemplate stringRedisTemplate;
private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public CacheClient(StringRedisTemplate stringRedisTemplate) {
this.stringRedisTemplate = stringRedisTemplate;
}
public void set(String key, Object value, Long time, TimeUnit unit) {
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit);
}
public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit) {
// 设置逻辑过期
RedisData redisData = new RedisData();
redisData.setData(value);
redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));
// 写入Redis
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));
}
public <R,ID> R queryWithPassThrough(
String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){
String key = keyPrefix + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(json)) {
// 3.存在,直接返回
return JSONUtil.toBean(json, type);
}
// 判断命中的是否是空值
if (json != null) {
// 返回一个错误信息
return null;
}
// 4.不存在,根据id查询数据库
R r = dbFallback.apply(id);
// 5.不存在,返回错误
if (r == null) {
// 将空值写入redis
stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
// 返回错误信息
return null;
}
// 6.存在,写入redis
this.set(key, r, time, unit);
return r;
}
public <R, ID> R queryWithLogicalExpire(
String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
String key = keyPrefix + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isBlank(json)) {
// 3.存在,直接返回
return null;
}
// 4.命中,需要先把json反序列化为对象
RedisData redisData = JSONUtil.toBean(json, RedisData.class);
R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);
LocalDateTime expireTime = redisData.getExpireTime();
// 5.判断是否过期
if(expireTime.isAfter(LocalDateTime.now())) {
// 5.1.未过期,直接返回店铺信息
return r;
}
// 5.2.已过期,需要缓存重建
// 6.缓存重建
// 6.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
boolean isLock = tryLock(lockKey);
// 6.2.判断是否获取锁成功
if (isLock){
// 6.3.成功,开启独立线程,实现缓存重建
CACHE_REBUILD_EXECUTOR.submit(() -> {
try {
// 查询数据库
R newR = dbFallback.apply(id);
// 重建缓存
this.setWithLogicalExpire(key, newR, time, unit);
} catch (Exception e) {
throw new RuntimeException(e);
}finally {
// 释放锁
unlock(lockKey);
}
});
}
// 6.4.返回过期的商铺信息
return r;
}
public <R, ID> R queryWithMutex(
String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
String key = keyPrefix + id;
// 1.从redis查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(shopJson)) {
// 3.存在,直接返回
return JSONUtil.toBean(shopJson, type);
}
// 判断命中的是否是空值
if (shopJson != null) {
// 返回一个错误信息
return null;
}
// 4.实现缓存重建
// 4.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
R r = null;
try {
boolean isLock = tryLock(lockKey);
// 4.2.判断是否获取成功
if (!isLock) {
// 4.3.获取锁失败,休眠并重试
Thread.sleep(50);
return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit);
}
// 4.4.获取锁成功,根据id查询数据库
r = dbFallback.apply(id);
// 5.不存在,返回错误
if (r == null) {
// 将空值写入redis
stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
// 返回错误信息
return null;
}
// 6.存在,写入redis
this.set(key, r, time, unit);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}finally {
// 7.释放锁
unlock(lockKey);
}
// 8.返回
return r;
}
private boolean tryLock(String key) {
Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
return BooleanUtil.isTrue(flag);
}
private void unlock(String key) {
stringRedisTemplate.delete(key);
}
}
验证格式(手机号,邮箱,验证码)
RegexPatterns.java-->包含一些正则表达式规则
package com.hmdp.utils;
public abstract class RegexPatterns {
/**
* 手机号正则
*/
public static final String PHONE_REGEX = "^1([38][0-9]|4[579]|5[0-3,5-9]|6[6]|7[0135678]|9[89])\\d{8}$";
/**
* 邮箱正则
*/
public static final String EMAIL_REGEX = "^[a-zA-Z0-9_-]+@[a-zA-Z0-9_-]+(\\.[a-zA-Z0-9_-]+)+$";
/**
* 密码正则。4~32位的字母、数字、下划线
*/
public static final String PASSWORD_REGEX = "^\\w{4,32}$";
/**
* 验证码正则, 6位数字或字母
*/
public static final String VERIFY_CODE_REGEX = "^[a-zA-Z\\d]{6}$";
}
RegexUtils.java
package com.hmdp.utils;
import cn.hutool.core.util.StrUtil;
public class RegexUtils {
/**
* 是否是无效手机格式
* @param phone 要校验的手机号
* @return true:符合,false:不符合
*/
public static boolean isPhoneInvalid(String phone){
return mismatch(phone, RegexPatterns.PHONE_REGEX);
}
/**
* 是否是无效邮箱格式
* @param email 要校验的邮箱
* @return true:符合,false:不符合
*/
public static boolean isEmailInvalid(String email){
return mismatch(email, RegexPatterns.EMAIL_REGEX);
}
/**
* 是否是无效验证码格式
* @param code 要校验的验证码
* @return true:符合,false:不符合
*/
public static boolean isCodeInvalid(String code){
return mismatch(code, RegexPatterns.VERIFY_CODE_REGEX);
}
// 校验是否不符合正则格式
private static boolean mismatch(String str, String regex){
if (StrUtil.isBlank(str)) {
return true;
}
return !str.matches(regex);
}
}
全局id生成器
@Component
public class RedisIdWorker {
/**
* 开始时间戳
*/
private static final long BEGIN_TIMESTAMP = 1640995200L;
/**
* 序列号的位数
*/
private static final int COUNT_BITS = 32;
private StringRedisTemplate stringRedisTemplate;
public RedisIdWorker(StringRedisTemplate stringRedisTemplate) {
this.stringRedisTemplate = stringRedisTemplate;
}
public long nextId(String keyPrefix) {
// 1.生成时间戳
LocalDateTime now = LocalDateTime.now();
long nowSecond = now.toEpochSecond(ZoneOffset.UTC);
long timestamp = nowSecond - BEGIN_TIMESTAMP;
// 2.生成序列号
// 2.1.获取当前日期,精确到天
String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
// 2.2.自增长
long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);
// 3.拼接并返回
return timestamp << COUNT_BITS | count;
}
}