day4、5-opencv图像处理-近似矩形-可视化python

配置

home.h

#include "opencv.hpp"

using namespace std;
using namespace cv;

test_day1_pro

INCLUDEPATH += D:\Opencv\build_qt\install\include
INCLUDEPATH += D:\Opencv\build_qt\install\include\opencv
INCLUDEPATH += D:\Opencv\build_qt\install\include\opencv2

LIBS += -L D:\Opencv\build_qt\install\x86\mingw\lib\libopencv_*.a

Mat Home::imageInitHandleOpencv(Mat img)

Mat Home::imageInitHandleOpencv(Mat img)
{
    Mat imgGray, imgBlur, imgCanny, imgDil;
    // 灰度处理
    cvtColor(img, imgGray, COLOR_BGR2GRAY);
    // 高斯模糊
    GaussianBlur(imgGray, imgBlur, Size(7, 7), 5, 0);
    // 获取轮廓
    Canny(imgBlur, imgCanny, 50, 150);
    // 定义结构元素,用于形态学操作
    Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5));
    // 膨胀操作,加粗轮廓
    dilate(imgCanny, imgDil, kernel);
    // 返回处理后的图像
    return imgDil;
}
  1. 将输入图像转换为灰度图像。
  2. 对灰度图像应用高斯模糊以减少噪声。
  3. 使用Canny边缘检测算法在模糊的图像中找到边缘。
  4. 使用形态学操作(膨胀)来加粗边缘。

图像检测-矩形近似

Mat Home::findObjectOnImage(Mat imgInit, Mat img, Rect &retRect)

Mat Home::findObjectOnImage(Mat imgInit, Mat img, Rect &retRect)
{
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

拾-光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值