大模型微调学习之旅的起点
通过学长的推荐了解到了书生·浦语,现阶段大模型呈井喷式的发展,身为人工智能的学生,感觉不应该局限于简单的调用大模型,而是应该根据实际的需求微调出符合自己情况的大模型,所以就加入了
书生·浦语大模型的培训营,接下来让我们开始大模型微调学习之旅!!!
目录
前言
当前的大模型进入了”百模大战“时代,截止到2023.10.8全球已经发布的大模型超200个,中美的数量占全球的九成。2023年大模型突然遍地开花,井喷式发展,尤其是后半年,几乎大部分科技公司、学术团体、研究机构、以及学生团队都在发布各自的大模型,大模型不在是”独家”,它的上手难度和成本在逐步的下降。而大模型的更进一步的发展,那就是开源,这样做会吸引大量的科技公司、学术团体、研究机构等去进行二创,一旦规模达到一定程度,那么就会形成生态。而[书生·浦语」大模型,它就是选择了开源这条路,把所有的内容都开源出来。
想学习的请看链接:
- 书生·浦语大模型全链路开源体系B站讲解
- github链接:GitHub - InternLM/tutorial
- InternLM:InternLM · GitHub
- 书生浦语官网:书生
一、书生·浦语大模型全链路开源体系是什么?
下图为书生·浦语大模型全链路开源体系
- 数据:汇聚 5400+ 数据集,涵盖多种模态与任务
- 预训练:并行训练,极致优化,速度达到 3600 tokens/sec/gpu
- 微调:全面的微调能力,支持SFT,RLHF和通用工具调用
- 部署:全链路部署,性能领先,每秒生成 2000+ tokens
- 评测:全方位评测,性能可复现,50 套评测集,30 万道题目