- 博客(5)
- 收藏
- 关注
原创 网络退化:魔方传递的困境—— 为什么残差允许叠加更深层网络?
想象一个多人接力传递还原魔方的]对于一个已经学习能力较强的网络, 可能在某一层已经实现了魔方的近似复原,我们再加上一些网络,目的是想要继续让这个魔方复原的更好。加深网络相当于将已经近似复原的魔方层层传递到下一个人的手中、期待在这种非线性的学习中(我们可以理解为随在传递的过程中进行了随机打乱,而不是简单递交),能够复原的更好(学习到更好的特征)。
2025-04-11 12:50:12
1893
原创 理解感受野——感受野溢出会带来什么?如何指导网络设计?
仍以手写数字识别为例、如果我们通过堆叠卷积核继续加深网络、我们会发现更大的网络似乎没有意义,也就是说此时加深网络似乎从感受野的角度来说似乎是盲目的?那是不是说,只有更复杂的、具有更高维特征的任务才需要相应加深网络深度、不断扩大感受野呢?*ResNet50采用了不一样的网络架构:瓶颈结构(bottleneck structure),这种结构在增加网络深度的同时,对感受野的扩张有一定影响。结论:有效感受野的存在告诉我们:仅仅达到输入尺度的感受野是无法将全部输入作为有效输入的。
2025-04-07 12:42:27
1852
原创 神经网络的直观理解:举例及比喻
因此理论上网络层数的加深可以学习到更为更为丰富的特征、再通过网络的传递、组合、复用来把握整体。因此深度学习的作用就是通过更为丰富的非线性变换得到隐式得、人类无法直接定义的特征(形状、相关性等等)。比如人脸情绪识别中、可能学习到脸部每一个局部特征并学习该特征与情绪的相关性最终来通过表情预测情绪。但实际工程实现会遇到一系列的问题限制我们网络加深:比如梯度消失、梯度爆炸、网络退化等等。实际应用中我们通过一系列数学操作、提出模型架构来解决。经典的ResNet网络是很好的一个例子。ResNet为何有效?
2025-04-06 22:14:49
2075
3
原创 ResNet为何有效?残差模块到底在学习什么?(直观及数学理解)
本文章尽可能通过直观的比喻来帮助理解神经网络特征学习过程还有ResNet为何有效。并通过数学公式的表示不失严谨性。
2025-04-06 20:08:45
1176
原创 如何使用 PyTorch 的 ImageFolder 进行数据集加载:关键在于数据集的目录结构要符合其要求,
使用加载图像数据集,关键在于数据集的目录结构要符合其要求,即每个类别对应一个子文件夹。在项目实践中,合理划分数据集、进行适当的数据增强和归一化处理,能够显著提升模型的训练效果。同时,要根据实际情况选择合适的数据集划分方式和数据增强策略,避免过度增强导致模型过拟合,或者增强不足导致模型泛化能力差。通过以上步骤,大家可以在自己的深度学习项目中灵活运用,轻松加载和处理图像数据集,为模型训练打下坚实的基础。希望本文对大家有所帮助,欢迎在评论区分享使用经验和遇到的问题。
2025-04-06 16:10:42
757
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人