数列
例62: 已知数列an{a_n}an的前nnn项和为Sn,a1=1,Sn=2an+1,则Sn=()S_n,a_1=1,S_n=2 a_{n+1} ,则S_n = ( )Sn,a1=1,Sn=2an+1,则Sn=()
(A) 2n−12^{n-1}2n−1 (B)(32)n−1(\frac 3 2)^{n-1}(23)n−1 (C)(23)n−1(\frac 2 3)^{n-1}(32)n−1 (D)12n−1\frac 1 {2^{n-1}}2n−11
解法一:书上的解法,由an+1=Sn+1−Sna_{n+1}=S_{n+1}-S_nan+1=Sn+1−Sn,故Sn=2an+1=2(Sn+1−Sn)S_n=2a_{n+1}=2(S_{n+1}-S_n)Sn=2an+1=2(Sn+1−Sn),即3Sn=2Sn+1,Sn+1Sn=323S_n=2S_{n+1},\frac {S_{n+1}} {S_n}=\frac 3 23Sn=2Sn+1,SnSn+1=23,所以{Sn}\{S_n\}{Sn}是以S1=a1=1S_1=a_1=1S1=a1=1为首项,q=32q=\frac 3 2q=23为公比的等比数列,即Sn=(32)n−1S_n=(\frac 3 2)^{n-1}Sn=(23)n−1,选(B).
解法二:高中时的解法,首先判断ana_nan是否为等比数列,由定义法来证明
当n=1n = 1n=1时,由Sn=2an+1S_n=2a_{n+1}Sn=2an+1得S1=a1=2a2S_1=a_1=2a_2S1=a1=2a2,故a2a1=12\frac {a_2} {a_1} = \frac 1 2a1a2=21,又a1=1a_1=1a1=1,所以a2=12a_2=\frac 1 2a2=21.
当n≥2n\geq 2n≥2时,由Sn=2an+1S_n=2a_{n+1}Sn=2an+1得Sn−1=2anS_{n-1}= 2a_nSn−1=2an,两式相减得an=2an+1−2ana_n=2a_{n+1}-2a_nan=2an+1−2an,得an+1an=32\frac {a_{n+1}} {a_n} = \frac 3 2anan+1=23,与上文矛盾,故{an}\{a_n\}{an}非等比数列,但当n≥2n \geq 2n≥2时,是一个首项为12\frac 1 221,公比为32\frac 3 223的数列,将之命名为数列{bn}\{b_n\}{bn},bn=12(32)n−1b_n=\frac 1 2(\frac 3 2)^{n-1}bn=21(23)n−1,数列{an}\{a_n \}{an}的第二项即{bn}\{b_n \}{bn}的第一项,故an={1n=1bn−1n≥2a_n=\begin{cases}1 & n=1 \\ b_{n-1} & n \geq2 \end{cases}an={1bn−1n=1n≥2 ,
设数列{bn}\{b_n \}{bn}的前nnn项和为TnT_nTn,
所以Sn={1n=1S1+Tn−1n≥2={1n=1S1+b1(1−qn−1)1−qn≥2S_n=\begin{cases}1 & n=1 \\ S_1+T_{n-1} & n \geq2 \end{cases} = \begin{cases}1 & n=1 \\ S_1+\frac {b_1(1-q^{n-1})} {1 - q} & n \geq2 \end{cases}Sn={1S1+Tn−1n=1n≥2={1S1+1−qb1(1−qn−1)n=1n≥2 ,
算得Sn=(32)n−1S_n=(\frac 3 2)^{n-1}Sn=(23)n−1,选(B).