简单的线性回归(以x轴为住房面积,y轴为价格为例)

实现并探索单变量线性回归的成本函数。

以x轴为住房面积,y轴为价格为例,进行线性回归的预测单变量:

其中真实的数据如图分布为散点,而用过线性回归进行预测,那么预测的数据应是一条直线如图

通过上面的两个公式可以进行预测

第一个方程是计算预测后的损失值的,损失值越小越好,表示性能优

第二个方程是线性回归的预测方程,w和b是一个偏一两,在后面的算法优化中会计算出w和b

这里的w和b就随便填一个数(w = 1000 ,b = 500)

然后就进行计算预测值:

###线性回归的预测值:
###f_wb = x * w + b x和f_wb都是向量(数组)
def compute_model_output(x,w,b):
    m = x.shape[0]  ###获取x数组的大小
    f_wb = np.zeros(m)  ###创建一个f_wb数组大小为m,并且全置为0

    for i in range(m):
        f_wb[i] = x[i] * w + b

    return f_wb
''' 或者也可以这样写:
    f_wb = x * w + b
    :return f_wb
    这里是用numpy中的向量进行计算
'''

然后就是画图:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值