实现并探索单变量线性回归的成本函数。
以x轴为住房面积,y轴为价格为例,进行线性回归的预测单变量:
其中真实的数据如图分布为散点,而用过线性回归进行预测,那么预测的数据应是一条直线如图
通过上面的两个公式可以进行预测
第一个方程是计算预测后的损失值的,损失值越小越好,表示性能优
第二个方程是线性回归的预测方程,w和b是一个偏一两,在后面的算法优化中会计算出w和b
这里的w和b就随便填一个数(w = 1000 ,b = 500)
然后就进行计算预测值:
###线性回归的预测值:
###f_wb = x * w + b x和f_wb都是向量(数组)
def compute_model_output(x,w,b):
m = x.shape[0] ###获取x数组的大小
f_wb = np.zeros(m) ###创建一个f_wb数组大小为m,并且全置为0
for i in range(m):
f_wb[i] = x[i] * w + b
return f_wb
''' 或者也可以这样写:
f_wb = x * w + b
:return f_wb
这里是用numpy中的向量进行计算
'''
然后就是画图: