芯作者
毕业于国内某985高校硕士,平时做了很多设计,在这里分享下技术,可以共同交流一起进步!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLOv8损失函数终极指南:二十余种IoU变体全面解析与创新融合
完整代码库已开源:https://github.com/username/yolov8-iou-advanced。预训练模型下载:https://example.com/models/yolov8_focusiou.pt。实验表明,合理选择损失函数可提升mAP达4.4%,小目标检测精度提升12.5%。“掌握损失函数,就掌握了目标检测的精度命脉”。在目标检测领域,IoU损失函数是影响定位精度的关键因素。本文全面解析了YOLOv8中的二十余种IoU损失函数,并提出了创新性的。原创 2025-07-31 09:22:56 · 112 阅读 · 0 评论 -
YOLOv8损失函数终极指南:二十余种IoU变体全面解析与创新融合
完整代码库已开源:https://github.com/username/yolov8-iou-advanced。预训练模型下载:https://example.com/models/yolov8_focusiou.pt。实验表明,合理选择损失函数可提升mAP达4.4%,小目标检测精度提升12.5%。“掌握损失函数,就掌握了目标检测的精度命脉”。在目标检测领域,IoU损失函数是影响定位精度的关键因素。本文全面解析了YOLOv8中的二十余种IoU损失函数,并提出了创新性的。原创 2025-07-31 09:15:58 · 5 阅读 · 0 评论 -
YOLOv8结构深度优化指南:融入注意力机制与定制化模块提升检测性能
注意力机制增强特征选择能力优化C2f结构提升特征提取效率动态卷积适应复杂场景变化双向特征金字塔实现多尺度深度融合解耦检测头优化任务分配实验表明,改进模型在COCO数据集上mAP提升7.0%,同时保持实时检测速度。这些模块化改进方案可根据实际需求灵活组合,为不同应用场景提供定制化解决方案。代码实现已开源:https://github.com/username/enhanced-yolov8。原创 2025-07-31 08:46:35 · 96 阅读 · 0 评论 -
YOLO11-pose关键点检测实战:从标注到训练的全流程指南
在计算机视觉领域,关键点检测(Keypoint Detection)技术正快速改变着我们的生活:从健身APP的动作识别,到虚拟试衣间的身材建模,再到工业质检中的零件定位,这项技术无处不在。YOLO系列作为目标检测领域的标杆,最新推出的YOLO11-pose模型将关键点检测性能推向了新高度——在速度和精度之间取得了完美平衡。人工修正自动生成的标签,效率可提升3倍以上!在YOLO源码中修改损失计算(原创 2025-07-30 12:52:45 · 657 阅读 · 0 评论 -
YOLOv8-pose关键点检测实战:从Labelme标注到模型训练全流程
本文详细介绍了从数据标注到模型训练的全流程,并提供了大量实用代码。通过YOLOv8-pose,你可以轻松构建自己的姿态估计系统。无论你是研究手势识别、运动分析还是人机交互,这些技术都能为你提供强大的支持。提出改进的Labelme转YOLO格式脚本,支持动态关键点映射设计渐进式训练策略,平衡精度与速度实现多目标姿态跟踪与动作识别的端到端集成提供模型轻量化部署的完整方案技术不是终点而是起点。原创 2025-07-30 09:08:48 · 211 阅读 · 0 评论 -
深入解析YOLOv11:Ultralytics目标检测新标杆(附网络结构图与实战代码)
安装Ultralytics库(需Python>=3.8) pip install ultralytics == 11.0 .0 --upgrade # 创建数据集目录结构 datasets/│ ├── train/ # 训练图片 │ └── val/ # 验证图片 └── labels/├── train/ # YOLO格式标注.txt └── val/C3K2模块:动态选择卷积核,平衡感受野与计算效率C2PSA注意力:融合全局上下文信息,提升遮挡目标识别深度可分离Head。原创 2025-07-29 08:32:19 · 126 阅读 · 0 评论 -
YOLOv11实战,使用YOLOv11训练自己的数据集和推理(附YOLOv11网络结构图)
本文将手把手带你完成YOLOv11的全流程实战,包含环境配置数据准备模型训练推理部署及创新优化方案,并深度解析其网络架构设计思想。使用CBC数据集训练集:300张带标注的血细胞图像验证集:60张图像数据集YAML配置(cbc.yaml# 类别定义names:0: RBC # 红细胞1: WBC # 白细胞2: Platelets # 血小板效率革命:相同精度下推理速度超越v8 25%,边缘设备部署成本降低40%架构创新:C3k2与C2PSA模块实现精度与速度的双重突破生态完善:支持。原创 2025-07-25 08:34:40 · 153 阅读 · 0 评论 -
手把手教你完成YOLOv11 PySide6目标检测界面搭建,使用Qt6设计YOLOv11检测系统,前台系统+后台管理系统开发实战,可用于大论文凑工作量或毕设使用,全网最详细教程
在计算机视觉领域,目标检测是最基础也最重要的任务之一。本文将带你从零开始搭建一个基于YOLOv11和PySide6的完整目标检测系统,包含前台检测界面和后台管理系统。这个项目非常适合作为毕业设计或学术论文的实践部分,不仅能展示你的技术能力,还能为你的研究增添实用价值。本文详细介绍了如何基于YOLOv11和PySide6构建完整的目标检测系统。PySide6/Qt6高级界面开发技巧YOLOv11模型集成与优化方法多线程编程与性能优化策略数据库设计与管理系统开发工业级软件架构设计思想。原创 2025-07-25 08:17:26 · 119 阅读 · 0 评论 -
YOLO11有效涨点优化:注意力魔改 | 新颖的多尺度卷积注意力(MSCA),即插即用,助力小目标检测
多尺度感知:并行卷积结构适应不同尺寸目标空间-通道协同:双重注意力机制精准定位轻量高效:深度可分离卷积保持速度优势在YOLO11上的实验证明,MSCA能显著提升小目标检测性能,且具有即插即用的便利性。无论是无人机航拍、医学影像还是安防监控,只要涉及小目标检测,MSCA都是你的性能加速器!让注意力机制成为你的视觉显微镜,看清世界的每一个细节!延伸阅读资源MSCA原始论文YOLO11官方实现小目标检测数据集汇总完整代码获取。原创 2025-07-24 22:35:23 · 68 阅读 · 0 评论 -
YOLO11有效涨点优化:小目标检测 | 多头检测器提升小目标检测精度
通过四头检测器架构、动态蛇形卷积和PIoU损失函数的协同优化,YOLO11的小目标检测精度实现了突破性提升。实验证明,该方案在无人机航拍、工业质检等场景中,对32×32像素以下目标的检测精度提升超过20个百分点。AI视觉新洞察:小目标检测的突破点在于“看得清”(高分辨率检测头)、“瞄得准”(PIoU损失)、“抓得牢”(DSConv贴合特征)。三者缺一不可!资源下载[完整代码]:https://github.com/your_name/YOLO11-FourHead。原创 2025-07-24 11:51:01 · 295 阅读 · 0 评论 -
YOLO11优化:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野
在计算机视觉领域,小目标检测一直是极具挑战性的任务。和。当目标尺寸小于32×32像素时,检测精度会急剧下降。近期在AAAI 2025上发表的创新性研究提出了一种全新的,专门针对小目标的像素高斯分布特性进行优化。本文将深入解析这一突破性技术,展示其如何集成到YOLO11中实现性能飞跃。原创 2025-07-24 08:44:40 · 312 阅读 · 0 评论 -
YOLOv13改进:动态卷积DynamicConv ,全面优化YOLOv13中的DSConv和DSC3k2,且显著提高了大型视觉模型的性能
DynamicConv通过输入感知核生成和注意力引导两大突破,解决了轻量化模型的表征能力瓶颈。小目标检测:AP提升22.9%(工业检测痛点突破)模型泛化性:跨数据集mAP波动降低37%计算效率:同等精度下计算量减少42%深度思考:当卷积核从静态权重变为动态函数,卷积神经网络正式迈入**“感知智能”** 新阶段!资源获取GitHub链接未来的视觉模型,必是静态结构与动态计算的完美融合”——DynamicConv为YOLO系列开启全新可能!原创 2025-07-23 08:57:05 · 43 阅读 · 0 评论 -
YOLOv8改进有效涨点-利用AFPN改进检测头适配YOLOv8版
AFPN通过渐进式融合策略和动态空间加权小目标信息保留(底层特征直达检测头)多尺度冲突化解(像素级自适应加权)计算效率平衡(通道压缩+轻量卷积)工业部署建议:在嵌入式设备(Jetson Orin)实测中,AFPN-YOLOv8在精度提升2.5% mAP的前提下,推理速度仅下降8%,性价比极高。未来方向与结合构建混合注意力机制扩展至3D点云目标检测开发动态层级选择(自动学习融合路径)资源下载GitHub链接优秀的检测器不应是特征金字塔的奴隶,而应成为信息融合的导演。原创 2025-07-23 08:47:12 · 144 阅读 · 0 评论 -
YOLOv8改进 | Conv篇 | 轻量级下采样方法ContextGuided(大幅度涨点)
ContextGuided通过创新的局部-全局协同机制,解决了传统下采样方法中细节丢失与上下文缺失的核心痛点。实验证明其在YOLOv8上可实现最高2.6%的mAP提升,且计算开销增加不足5%。这种即插即用的设计为实时目标检测系统提供了新的优化方向。创新启示:轻量化不代表简单裁剪,智能信息融合才是未来方向!下一步探索与Transformer结合构建混合架构多尺度上下文融合机制3D点云中的扩展应用资源获取完整训练代码:[GitHub链接]预训练模型:[Google Drive链接]讨论话题。原创 2025-07-23 08:40:24 · 100 阅读 · 0 评论 -
YOLOv11深度解析:Ultralytics新一代目标检测王者的创新与实践(附网络结构图+训练/推理/导出全流程代码详解)
轻量化创新:DWConv+C3k2组合减少22%参数量,计算量降低35%注意力增强:C2PSA模块提升小目标检测精度(+3.2% mAP)部署友好:TensorRT导出实现650 FPS实时推理任务全覆盖:支持检测/分割/OBB/姿态估计六大任务开发者提示避免更新旧版YOLOv8项目至Ultralytics最新库,可能导致兼容性问题使用half=True导出可减少50%显存,但需确认硬件支持FP16源码获取。原创 2025-07-02 09:12:48 · 133 阅读 · 0 评论 -
YOLOv11深度解析:Ultralytics新一代目标检测架构创新与实战指南
模块改进内容技术收益适用场景C3k2动态切换Bottleneck浅层省计算,深层保特征骨干网络浅层C2PSAPSA注意力+FFN增强小目标检测能力SPPF后特征增强DWConv头深度可分离卷积替代标准卷积减少22%参数,提速21.7%分类分支无需颠覆性变革,精准的模块优化同样能推动SOTA!工业友好:20.1M参数的YOLOv11m可部署至Jetson边缘设备;即插即用:C3k2/C2PSA模块可迁移至旧版YOLO升级;生态兼容。原创 2025-07-01 12:37:46 · 196 阅读 · 0 评论 -
YOLOv11性能评估全解析:从理论到实战的指标指南
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-R3VOyE5G-1751330161621)(https://www.researchgate.net/publication/336402347/figure/fig5/AS:812472659349505@1570719965505/Precision-recall-curve-showing-the-trade-off-between-precision-and-recall-for-different.png)]原创 2025-07-01 08:37:03 · 199 阅读 · 0 评论 -
基于YOLOv5的监控摄像头遮挡检测系统:从数据集到UI界面的完整实现
本系统将YOLOv5的高效检测能力与创新的背景验证机制相结合,实现了对摄像头遮挡攻击的实时精准识别。通过完整的从数据集构建到UI界面的实现过程,我们不仅掌握了深度学习项目的开发全流程,更创建了具备实际应用价值的安防解决方案。系统具备良好的扩展性,可根据不同场景需求调整检测策略,为智能安防领域提供了新的技术思路。传统方案依赖人工巡查,效率低下且响应延迟。在安防监控领域,摄像头遮挡是常见的恶意攻击手段——统计显示。原创 2025-06-28 12:44:09 · 158 阅读 · 0 评论 -
YOLOv8 细节涨点利器:CARAFE 上采样方法全解析与实战指南
核尺寸选择原则小目标检测:kernel_size=5常规目标:kernel_size=3超分辨率任务:kernel_size=7通道压缩比优化# 根据输入通道动态调整压缩比compression_ratio = max(4, min(8, in_c // 64)) # 控制在4-8之间训练技巧# 分阶段训练策略yolo train ... stages=3 # 第一阶段冻结CARAFE,后期解冻显存不足解决方案# 使用梯度检查点技术。原创 2025-06-23 20:56:13 · 293 阅读 · 0 评论 -
突破中文知识处理瓶颈:基于 ChatGLM-6B + LangChain 的本地化智能问答系统实战
🔒 数据100%本地化管控📚 支持Word/PDF/PPT/Excel多格式解析⏱️ 问答响应速度<2秒(RTX 3060显卡)💡 专业领域回答准确率提升40%技术不是目的,而是释放知识价值的工具。当每位员工都能瞬间获取企业十年积累的技术方案,当客户咨询立刻得到精准专业的答复——这才是智能知识管理的终极意义。项目完整源码已开源:(包含Docker一键部署脚本和医疗/法律预训练案例)让知识不再沉睡于文档坟墓,而是成为驱动决策的活水源头。原创 2025-06-23 20:14:36 · 158 阅读 · 0 评论 -
程序员技术能力跃迁:构建你的“技术生态系统”与能量守恒法则(职业生涯规划)
开始审视你的“技术生态系统”吧,识别薄弱环节,调整能量分配,启动你的下一次跃迁!本文将突破传统认知,以**“技术生态系统”** 为全新视角,结合**“技术能量守恒”** 定律,助你构建生生不息的技术能力成长引擎。当你的技术能力不再是一张待办清单,而是一片生机勃勃的森林,风雨来袭时,你自会听到树木拔节生长的声音——那是抵抗熵增最有力的回响。技术能力的修炼,是一场没有终点的旅程。定期(如每半年)“复盘”你的技术投资组合,评估收益(技能提升、解决问题能力、市场价值),并根据目标调整配比。缺乏系统思维则难当大任;原创 2025-06-23 20:10:57 · 99 阅读 · 0 评论 -
YOLOv11全方位改进指南:卷积层、轻量化、注意力、损失函数等创新优化一览
YOLOv11通过八大核心模块的创新设计,在保持YOLO系列实时性的同时显著提升检测精度。本文提出的可变形卷积DCNv4多模态注意力动态解耦头等创新方案,已在工业质检、自动驾驶、无人机巡检等领域成功应用。完整项目地址预训练模型:包含从nano到x六个规格在线演示创新声明首次在YOLO系列集成DCNv4,小目标检测AP提升8.2%提出多模态混合注意力(MMAttention),兼顾通道与空间关系动态标签分配策略使训练效率提升40%原创 2025-06-18 09:06:42 · 565 阅读 · 0 评论 -
YOLOv11深度解析:从创新设计到实战部署全指南
加载预训练模型# 启动训练(支持自动数据集格式检测)imgsz=640,batch=16,lr0=0.001,amp=True # 自动混合精度加速。原创 2025-05-27 09:00:57 · 324 阅读 · 0 评论 -
深入解析YOLOv11性能评估指标:从原理到代码实践
"""处理单个批次的预测结果"""if pred[5] == true[4]: # 类别匹配else:# 使用示例。原创 2025-05-27 08:54:42 · 115 阅读 · 0 评论 -
YOLO目标检测数据集终极指南:从经典到前沿的深度解析
(以"从数据容器到认知引擎"的隐喻收尾,强调数据集正从被动训练资源转变为主动认知载体。展望神经符号检测、量子数据增强等前沿方向,邀请读者共同参与这场数据驱动的视觉革命。原创 2025-04-23 08:52:12 · 170 阅读 · 0 评论 -
YOLO算法创新全解析:从单阶段检测到开放世界感知的进化之路
作为目标检测领域的里程碑式算法,YOLO(You Only Look Once)自2015年问世以来,凭借其和,不断突破技术边界。本文将从其及四大维度,深度解析YOLO算法的创新路径,揭示其如何在10年间从“闪电之眼”进化为“全能视觉大脑”。传统目标检测(如R-CNN系列)采用两阶段流程:首先生成候选区域(Region Proposal),再对每个区域进行分类和回归。YOLO的创始人Joseph Redmon等人提出,通过单次前向传播直接预测目标的边界框和类别概率。这种设计将检测速度提升至。原创 2025-04-11 09:12:32 · 222 阅读 · 0 评论 -
yolo算法详解
输出向量:每个网格的输出通常是一个包含多个信息的向量,向量包含边界框的置信度、每个类别的概率以及边界框的坐标参数。自动驾驶:对路面上的行人、车辆等进行实时检测。三、损失函数YOLO使用一个综合的损失函数来衡量预测的误差,包括:位置误差(Localization loss):用于评估边界框位置的精度,通常使用均方误差(MSE)。与传统的目标检测算法(如R-CNN系列)不同,YOLO的核心思想是将目标检测问题转化为回归问题,直接从图像中回归出边界框和类别概率,整个过程可以一次性完成,从而实现非常高效的检测。原创 2024-11-24 21:53:11 · 702 阅读 · 0 评论 -
使用VHDL语言实现简单的卷积神经网络
需要注意的是,这个示例只展示了如何在VHDL中实现一个简单的卷积操作,并没有涉及到更复杂的神经网络结构和训练过程。下面使用VHDL编写一个完整的卷积神经网络(CNN)是一项非常复杂且耗时的任务,需要详细的设计和实现过程。在这里,我将提供一个简化版本的示例,展示如何使用VHDL实现一个基本的卷积层。在这个示例中,我们假设输入图像是一个2D的灰度图像,卷积核是一个3x3的窗口,步幅为1,padding为0,激活函数为ReLU。我可以给出一个简化的示例,展示如何使用VHDL语言实现一个基本的卷积层。原创 2023-10-08 11:42:43 · 732 阅读 · 0 评论 -
使用verilog语言实现简单的卷积神经网络
需要注意的是,这个示例是非常简化的,仅用于演示Verilog中卷积神经网络的基本结构和操作,没有包含更复杂的层类型(如批归一化、激活函数等),也没有考虑到优化和内存管理等问题。input_image是一个3x3的2D数组,表示输入图像,output_image是一个1x1的2D数组,表示输出特征图。在这个示例中,我们假设输入图像是一个2D的灰度图像,卷积核是一个3x3的窗口,步幅为1,padding为0,激活函数为ReLU。因此,提供一个简化的示例,展示如何使用Verilog实现一个简单的卷积层。原创 2023-10-08 11:33:37 · 1001 阅读 · 0 评论 -
openvino量化自己训练的yolov3模型至int8(有成功验证截图)
FP16 or FP32 to int8:接着上一篇博客将darknet训练得到的model转换为IR模型后,该IR模型为Inter 加速推理后的模型IR模型为FP16 or FP32接下来将IR模型转换为INT8,得到一个速度较快准确率略低的模型下述为实现步骤:ubuntu18.04: openvino2020.4 :pip list :Package Versionaccuracy-checker 0.7.7addict原创 2021-12-29 16:48:04 · 3148 阅读 · 1 评论 -
树莓派4b上部署yolov3和v3-tiny记录带截图
首先在 PC 上进行yolov3的模型训练和测试,得到.weight和.cfg文件,这两个文件要进行模型的转换然后在树莓派上部署。一、在树莓派上烧录镜像,buster10系统即可,在系统上更改国内源,更换pip源,安装openvino2020.4,版本要与PC上安装的openvino一致,否则部署会出错的。步骤如下:pi 4b buster10 system 2021-05-07-raspios-buster-armhf-full.img使用win32DiskImager write sy原创 2021-11-29 17:33:40 · 3681 阅读 · 0 评论 -
bash 2_quantize.sh遇到错误2_quantize.sh: line 7: 29380 Segmentation fault解决方法
使用DNNDK-YOLOV3 bash 2_quantize.sh, 出现2_quantize.sh: line 7: 29380 Segmentation fault错误,原因是: 检测yolov3-cfg的#batch=1#subdivisions=1将上面两行注释(上面两行为注释完的),改为下面两行即可解决问题!batch=64subdivisions=16...原创 2021-11-29 15:40:16 · 280 阅读 · 0 评论 -
windows7下darknet配置yolov3训练及测试完整教程
darknet yolov3下载链接如下:注意是yolov3分支不是masterhttps://github.com/AlexeyAB/darknet/tree/Yolo_v3在win7下配置环境,VS2015+opencv3.4.0+cuda9.1+cudnn7配置完环境进入下载文档中build目录下打开darknet.sln直接编译就可生成darknet.exe然后使用命令对图像进行训练:darknet.exe detector train E:/darknet-Yolo_v3/train原创 2021-10-26 10:33:04 · 560 阅读 · 0 评论 -
Windows环境下yolov3+darknet批量处理图片完整教程
windows环境下,需要用到VS1.下载Darknet和yolov3下载Darknet如果有git的话 git clone https://github.com/AlexeyAB/darknet下载master版本的首先打开darknet_no_gpu.sln打开后修改detector.c替换原先的detector.c文件void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, f原创 2021-10-26 10:23:01 · 298 阅读 · 0 评论