
大模型应用开发
文章平均质量分 95
欢迎来到“大模型应用开发专栏“,这里是探索AI大模型技术与实际业务场景深度融合的前沿阵地。本专栏聚焦大型语言模型(LLM)在企业级应用中的落地实践,从模型选型、提示词工程到系统架构设计,为开发者提供全方位的技术指南。
我们将深入剖析Spring AI、LangChain4j等主流框架的应用技巧,探讨
在未来等你
如果所有的付出都没有回报,那还让我怎么坚持
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LangChain4j在Java企业应用中的实战指南-1
LangChain4j 是一个面向 Java 生态的开源框架,旨在简化大语言模型(Large Language Model, LLM)在企业级应用中的集成与使用。它基于 LangChain 的理念,但专门为 Java 开发者设计,提供了更丰富的 API 和更灵活的配置方式。RAG(Retrieval-Augmented Generation)是一种结合检索和生成的技术,通过从外部数据源中检索相关信息,并将其作为上下文提供给 LLM,从而提高生成质量。原创 2025-07-01 18:55:02 · 628 阅读 · 0 评论 -
LangChain4j在Java企业应用中的实战指南-2
LangChain4j 是一个面向 Java 生态的开源框架,旨在简化大语言模型(Large Language Model, LLM)在企业级应用中的集成与使用。它基于 LangChain 的理念,但专门为 Java 开发者设计,提供了更丰富的 API 和更灵活的配置方式。RAG(Retrieval-Augmented Generation)是一种结合检索和生成的技术,通过从外部数据源中检索相关信息,并将其作为上下文提供给 LLM,从而提高生成质量。原创 2025-07-01 19:55:42 · 626 阅读 · 0 评论 -
LangChain4j在Java企业应用中的实战指南-3
LangChain4j 是一个面向 Java 生态的开源框架,旨在简化大语言模型(Large Language Model, LLM)在企业级应用中的集成与使用。它基于 LangChain 的理念,但专门为 Java 开发者设计,提供了更丰富的 API 和更灵活的配置方式。RAG(Retrieval-Augmented Generation)是一种结合检索和生成的技术,通过从外部数据源中检索相关信息,并将其作为上下文提供给 LLM,从而提高生成质量。原创 2025-07-01 17:55:00 · 907 阅读 · 0 评论 -
Spring AI框架的实战应用指南:在企业级Java应用中集成和使用Spring AI
Spring AI 作为 Spring 生态中的一颗新星,凭借其强大的功能、简洁的 API 设计以及与 Spring Boot 等主流框架的无缝集成,成为企业级 Java 应用中集成 AI 功能的理想选择。通过本文的详细讲解,我们可以看到 Spring AI 不仅能够快速构建智能客服、问答系统等典型应用,还能通过性能优化策略提升系统的稳定性和效率。原创 2025-06-30 17:56:11 · 1154 阅读 · 0 评论 -
企业级RAG系统架构设计与实现指南(Java技术栈)
在当今快速发展的AI技术背景下,已成为构建智能问答、知识库管理、个性化推荐等应用的核心技术之一。RAG系统通过结合与,能够有效提升模型对特定领域数据的适应能力,避免传统大模型在训练数据不足或数据更新不及时时出现的“幻觉”问题。本文将围绕,深入探讨其分层结构、核心组件、关键实现技术,并以为主,结合Spring AI和LangChain4j框架,提供一套完整的实现方案。原创 2025-06-25 17:49:43 · 1118 阅读 · 0 评论 -
LangChain4j在Java企业应用中的实战指南:构建RAG系统与智能应用-2
在生成回答之前,先从已有的知识库或文档中检索相关信息,然后将这些信息与 LLM 结合,生成更准确、更相关的答案。文档存储:用于存储大量文本数据。向量化:将文档内容转换为向量形式,便于高效检索。检索引擎:根据用户的查询,从文档中检索出最相关的片段。生成模型:基于检索到的信息,生成最终的回答。原创 2025-06-24 19:53:28 · 878 阅读 · 0 评论 -
LangChain4j在Java企业应用中的实战指南:构建RAG系统与智能应用-1
LangChain4j的核心组件ChainAgent和Memory各司其职,共同支撑着整个框架的功能。Chain用于构建任务流水线,Agent用于实现智能决策,而Memory则用于管理对话上下文。通过合理使用这些组件,开发者可以构建出高效、灵活的AI应用。LangChain4j允许开发者自定义链式结构,以构建复杂的任务流程。通过组合多个步骤,开发者可以实现更复杂的逻辑和功能。// 定义步骤});});// 构建链// 执行链。原创 2025-06-24 17:48:01 · 1023 阅读 · 0 评论 -
Spring AI框架的实战应用指南
随着人工智能技术的快速发展,越来越多的企业开始将AI能力集成到其业务系统中。无论是智能客服、自然语言处理(NLP)、还是数据分析,AI已经成为现代软件架构中不可或缺的一部分。在Java生态中,Spring AI是一个基于 Spring 生态的轻量级 AI 框架,它为开发者提供了一套统一的接口和工具,使得在 Java 应用中使用大模型(如 GPT、LLaMA、Qwen 等)变得更加简单和高效。原创 2025-06-23 18:31:09 · 851 阅读 · 0 评论 -
Java企业技术趋势分析:AI应用的落地实践与未来展望
在当前快速发展的数字化时代,人工智能(AI)已经成为推动企业创新和效率提升的关键力量。Java作为企业级应用开发的主流语言,正经历着一场深刻的变革。随着Spring AI、LangChain4j、RAG系统架构以及向量数据库等技术的兴起,Java开发者面临着前所未有的机遇与挑战。在这一背景下,企业对AI技术的需求日益增长,尤其是在数据分析、自动化流程和智能服务等领域。根据2023年Gartner的报告,超过75%的企业正在投资于AI相关的技术,以提高其市场竞争力。原创 2025-06-13 18:31:03 · 714 阅读 · 0 评论 -
AI技术专题:电商AI专题
【现代电商系统中的AI应用实践】原创 2025-06-12 18:32:04 · 824 阅读 · 0 评论 -
企业级RAG系统架构设计与实现指南(基于Java技术栈)
企业级RAG系统的架构通常采用分层设计,以确保系统的可扩展性、灵活性和可维护性。数据处理层:负责文档的预处理、分块、向量化等操作。存储层:用于持久化文档向量、元数据及原始内容。检索层:执行相似度搜索、语义路由和重排序等操作。生成层:集成大语言模型(如LLM),根据检索结果生成最终回答。应用层:提供API接口或前端界面,供业务系统调用。| 应用层 |v| 生成层 |v| 检索层 |v| 存储层 |v| 数据处理层 |原创 2025-06-11 19:31:40 · 1416 阅读 · 0 评论 -
LangChain4j在Java企业应用中的实战指南:构建RAG系统与智能应用
通过以上步骤,我们完成了LangChain4j的基础设置。这包括依赖配置、模型初始化、向量存储配置以及代理和记忆的设置。这些步骤为后续的RAG系统构建打下了坚实的基础。接下来,我们将深入探讨LangChain4j的核心组件,了解它们在构建智能应用中的作用。LangChain4j 的设计理念是高度模块化,允许开发者根据具体需求自定义组件。通过实现特定接口或继承现有类,开发者可以创建自己的模型、链、代理、记忆等组件,从而更好地适应业务场景。@Override// 自定义模型逻辑,例如调用第三方API。原创 2025-06-10 19:10:52 · 1140 阅读 · 0 评论