基于时空信息的乱扔垃圾行为检测
现有相关工作
在垃圾相关的检测与分类工作中,有不少值得关注的成果。
- 车牌识别记录非法倾倒车辆 :有工作基于Open Automatic License Plate Recognition(OpenALPR)的图像处理技术。通过将树莓派相机模块与微波雷达传感器连接到树莓派(作为微处理器,用Python编程),拍摄车辆图片来识别车牌。该研究能实现非法倾倒案件的自动实时邮件通知和车辆车牌号码识别,可用于案件监控。
- 基于深度学习的非法垃圾倾倒检测 :有人提出基于深度神经网络的非法垃圾倾倒自动检测和报告系统。借助OpenPose和You Only Look Once(YOLO)目标检测模型,获取倾倒者的关节点,测量手腕与垃圾袋的距离来判断是否非法倾倒。还利用多目标跟踪(MOT)模型跟踪垃圾袋ID,减少误检,该方法更准确且误报少。
- 基于CNN的城市垃圾分类 :有人提供了基于CNN的自动模型,通过微调预训练神经网络模型和新数据集对城市垃圾进行分类,可利用低成本资源大规模部署。
背景知识
深度学习
传统机器学习系统在处理图像、语音等自然数据时存在限制,创建处理自然数据的机器学习算法需要精确的工程能力,自然语言处理所需的大规模复杂计算技术难以实现。为解决这些问题,出现了表征学习。
深度学习是机器学习的一个分支,依赖表征学习方法。它是一种多层、反向传播、表征、自学习技术,使用简单但非线性的函数。每一层将数据表示从一种形式转换为另一种形式,提取原始数据中的信息,从接收原